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I. I NTRODUC no',

In this paper. best quadrature formulas in the sense of Sard with lixed
knots corresponding to splines satisfying mixed boundary canditions are
characterized. Work along these lines was initiated by Schoenberg in [79]
and subsequently refined and generalized by Karlin in [3]. Here the analysis
in [3] is extended to include quadrature formulas involving mixcd boundary
forms. Additionally, not only polynomial splines but also splines induced
by a general differential operator of Polya type Ware considered. This
generality is useful because it reveals clearly. for the tlrst time. the full
role played by the adjoint differential operator in the correspondence between
quadrature formulas and monosplines. Also, certain hypotheses made in [3]
regarding sign consistency of matrices corresponding to the adjoint boundary
forms are seen to be unnecessary. being consequences of the sign consistency
already imposed on the original boundary forms (A result of this type is
suggested by certain Green's function considerations.) This observation
considerably simplifies the task of verifying that the hypothesis of some basic
theorems in [3] are satisfied in concrete cases.

This paper is organized as follows. Section 2 contains the basic notation
and concepts to be used. Section 3 establishes the basic correspondence
between quadrature formulas exact on a specified class of polynomials and
monosplines. Section 4 characterizes the quadrature formula best in the
sense of SaI'd essentially in terms of an orthogonality condition (of little
practical utility), and also by means of a system of linear equations explicitly
available for computation. A simple example points out that Theorem 1.3 in
[3] must be rephrased. Section 5 presents some important quadrature
formulas involving mixed boundary forms. In particular, periodic and
antiperiodic boundary forms are treated. Section 5 also contains a basic
result (Theorem 5.2) concerning the sign consistency of boundary forms and
their adjoints (Professor S. Karlin told me that he also discovered this result
for the case of separated boundary conditions: his work is unpublished. hut
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he lectured on it at the Weizmann Institute in 1973.) This result bears useful
consequences here, and in the study of boundary value problems of the
Sturm-Liouville type. Sections 6 and 7 deal with quadrature formulas
involving separated boundary forms. In particular, improved versions of
Theorems 3.2 and 4.1 in [3] are obtained Also, Theorem 6.3 extends and
refines a basic result, Theorem I in Schoenberg [8]. Section 8 contains
concluding remarks and extensions of this work. including a discussion of
multiknot quadrature formulas.

2. TERMINOLOGY AND PRELIMINARY RESULTS

A lIlonospline of degree n with knots {~I.·)L1' 0 <: gl
expression of the form.

I. is an

II

I 17, ..\' I I I ell.. (x _ ~.)" f

• I i. f

where b,. and (!r. are real. The class of such monosplines is denoted b) II".,.
Il' the term x"!n! is discarded, the resulting function is a spline ojdegree II I
with knots {~IJ The linear space of these splines is denoted by Y;,.,. If the
monosplines or splines are required to satisfy the boundary conditions. 1'-. the
resulting classes of functions will be denoted by ./It,, ...(..:;i<) and Yo, (.7).

respectively. The knots {~/,} remain fixed in what follows and so are not
mentioned explicitly in the notation.

More precisely the splines (monosplines) above are polynomial splines
(monosplines). They are piecewise solutions of the differential equation
L/I 0 where L D"(L D" 1). respectively. More generally (Cr Karlin
and Studden [5]). consider splines and monosplines defined by means of the
differential operator.

where,

L L"

and.

(Dp)(x) D[lI(x)! II',(X)] , D - didx.

\1',(x) o on 0 x 1.
l1'j ~: C~II 1 i 1. 2..... n.

Any solution to L/I 0 is called an L-polynomial or polynomial for short.
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The class of these polynomials is denoted by ,;I' J'". The dillerential
equation Lli 0 has a basis of solutions,

lI,,(X)

11\(.\"),

1\'\(x)r 1I'~(td df\ .
IJ

.,j ,f l

II'I(X)' )I'if]) ' II"}(2)
~ 0 .., 0

,I"

I 11",,((,,]) df" 1 ". £if: '
"(\

(2.1 )

which constitute an extended complete Tchebychetl system, and satisfy the
initial conditions.

where.

(DJ-]Ui)(O) \\',(0) 6 i , i. i I ..... II.

and

D'

DO I.

I ..... /I.

the identity operator. The function.

cP,,(,r; 0 O. 0 x ~ I.
(2,2)

,/]
,r "1'

111(r) )I'~(td J, 11'3((2) r 11'"((,, tl df" ... df l •
•' of

0 c ,r 1.s

is the fundamental solution for Lli 0 determined by zero initial data at zero.
and the characteristic jump discontinuity.

which is equivalent to the requirement that the (n I)st (ordinary) derivative
of cP,,(x: ~) exhibit a jump of l!po(~) at x ~. where L poL,) duidx"

An L-spline, or spline for short. with knots {~k};] is a function 5 C'"
[0. I) which satislks (L5)(x) 0 except (possibly) when x ILl Each such
5 has an explicit representation as.

5(r) I h,lI,,(x)
I'el

I dl,cP,,(x;; fl,)'
I, 1
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for certain constants {by} and {dd. An L-monospline, or 111onospline for short
with knots {g,Jr~l is a function of the form.

n I'

M(x) ~. JJ,,(x) . L b,u,(x) + L dd)n(.'j; gl.l
1'-,-~1 1.'=1

where ifi.nCx) is the unique solution to the initial value problem.

.1 O. 1, ... , II --- l.
(2.3)

Direct integration yields the explicit representation for ifi" .

The differential operator L has adjoint,

L* cc= [,,*

where

Let

j ~~ I .... , n.

D*'

and by special convention

D* ... D *
n I-j n ~

j= 1, .... 11.

D*" D* D * = J-n+l 11 •

For later purposes it is useful to introduce the following notation:

j == n + I...". 211,

where.

I.

Then,

L * = « _1)n/wI ) D 2n '" D"'l ,

and.



352 JOHN W. LEE

Thus L *LII 0 has a basis.

LI;(.Y}
• ,1' ,I J

\\\(.Y} I lI'ill} .1" 1I':J(r~}
• 0

.,,1,

I 1I,(r. ,) iI!; , ... ill,
• 0

(2 ...\)

where i J •.... 2n. (Notice that Ill ..... II" are as given in (2.1).) Also, L'II - 0
has a basis constructed as in (2.1) with 11'\ ..... 1\'" replaced, respectively, by
H'IIH ..... 11'~11 . This basis is denoted by.

and the fundamental solution for L'" is denoted by.

cPl' *(x; C).

It is determined by zero initial data at zero and the characteristic jump
continuity,

Just as for L. polynomials, splines. and monosplines are induced by L* and
L *L. These L *-splines and L *-monosplincs playa key role in determining
quadrature formulas exact for L-polynomials. as do the L *L-splines and
L *L-monosplines. [n particular, an L *-monospline has the form.

:H(.y}
/I

L h"II,,'(X)
I' I

,.
L d/ePlI*('\; ~/J.
!.~1

where 1;" x is the unique solution to,

o. 0..... II - I,

and an L * L-monospline has the form

N(x)
2n

1;~II(x} :- L h,II,(Y)
I' -1

T

I d/,q,2,,('Y; ~k)'
!. \

where 1{;211 and q,2n are defined in terms of 11'1 .... , '1'2>1 just as 1J n and q,n are
defined in terms of \1'1 .... , \1'" .

In order to simplify notation the following conventions will be used. The
class of L-polynomials. L-splines, and L-monosplines will always be denoted.
respectively, by
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The class of all L *-polynomials, L *-splines, and L *-monosplines will be
denoted, respectively, by

The class of all L*L-polynomials, L '" L-splines, and L *L-monosplines
will be denoted, respectively, by

If any of these classes are subject to boundary constraints, .F, notation such
as Yn,r(§) will indicate this fact.

Consider mixed boundary forms,

Let

n

I a/iD ' IU(O)
I 1

I h'jDi l u(l),
i I

i ~cc 1,.", p.

be the vector of these boundary forms and

be the p 2/1 matrix determined by these forms. Assume rank C p.
Let v E cn. 2[0, 1] with 1'(11-1) piecewise continuous with at worst jump

discontinuities at ~1 , .. " ~,. Then for u E C"-I[O, I] with Ulll ) piecewise
continuous with at worst jump discontinuities integration by parts yields

rI u(L *r) dx
, n

where

For Z E C" 1 in a neighborhood °and 1 in [0, I] define the 2n-vectors z and
z* by

-* (D*"Z(O), ... , D*" 'z(O), D*"( I),,,,. D*" ';:-( I )V.
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Define matrices B(x) and S

JOHN W. LEL

B(x)

where 8; (0, ... ,0, 1,0, ... , ll)l is the usual ith coordinate basis vector, and

Then

s B(O) 0
o B(I)

B(u.r) Sri' c*.

where' is the usual inner product in 2n-space.
Adjoin rows [J I.... , 2n to the matrix C A, B so that the resulting

matrix

has rank 2n. Boundary forms complementary to U are defined by

U(u) : /)

Ue(u) : 2n p

Forms U(*(l') and U*(v) are defined by

p{! U,*(r)
2n p{11 U*(r)

(2.5)

where the on the matrices signifies the transpose conjugate operation. The
forms U*(v) are adjoint to the forms U(lI) because

B(u, c)

and consequently

Sri . r* [
U(u)] [u,*(r) ]
UAlI) . U*(I") ,

C(LlI) [. dx = U(u) . U,*(r) i U,.(lI)· U*(I")
• n

I [D*" lr(~I.) J)<" 1l'(~I. )) lMd/\lMd
), 1

(2.6)
.1I 1I( L *r) d.\'.

"0

This equation will be called the hasic integration hI' jJart.l(ornlllla.
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Let A be an m n matrix and p m, 11. Then,

A , ~l , , ~l' )' •

'-It , ,./"

355

stands for the determinant of the matrix obtained from A by deleting all rows
and columns except those labelled i] ....• i1) andi1 ,... ,j", respectively.

3. QUADRATURE FORMULAS EXACT ON L-POLYNOMIALS

The correspondence between monosplines and quadrature formulas exact
on (ordinary) polynomials of degree<n - I introduced in Schoenberg [8]
and extended and refined in Karlin [3] to embrace general separated boundary
forms will be extended to include general mixed boundary forms. Also, the
analysis here is presented for quadrature formulas exact on L-polynomials.
In this setting, it emerges clearly, for the first time, that quadrature formulas
exact on L-polynomials are in I : I correspondence with certain L *-mono­
splines. In the ordinary polynomial case L * = (--I)" L. the set of mono­
splines for Land L * agree or differ by a minus sign and the full role played
by adjoint differential operator is obscured. The analysis of this section
differs in several respects from that in [3, 7] because certain direct evaluations
possible in the ordinary polynomial case are not available.

Let

M(x) = V1 " *(x) I b,u,,*(x)
1'---1

I dl,ePn*(X; ~k)'
ko[

be an L *-monospline. Replacing v by M in (2.6) and utilizing L *M(x)
for x E {~I.} it follows that

.1

.I" II dx V(u) . V(*(M) - VI(u) . V*(/I,f)

r

I [D*" ,M(t-;-) - D*"lM(t-)] u(~,')ill'1(~k)
7.-[

(3.1 )
1r (LII) M dx.

'0

] f.\'1 also satisfies the adjoint boundary conditions.

V*(M) 0

then

)I

I G/V/(U) i I ('/eIMI)
(·1 I. [

dI (Lu) M dx
• 0

(3,2)
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where

C I.
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D,"lA1(C;I.) D*,-li'v1(c;l
-- --1; l~;.~j ~--

I = I .... , p.

1, ... , r.

(3.3)

Consequently the quadrature formula

Q(u)

is exact 011 L-polynomials.

Conversely suppose

L a,Li i(lI)
, 1

L cl·u(f,),
!. \

Q(lI)
I'

L ai' Ui(u), L CI.··ll(~!.) (3.4)
, 1 /, l

is exact on L-polynomials. For 11 (c' C"[O. I] the (generalized) Taylor formula

-\

lI(Y) L CiUi(Y) -- I Lu(t) cPf/(Y; t) dt,
, I "\I

e I

Di IU(O)
-------

11;(0)
I ..... II.

holds. (Consult [5. Chapter 11. Lemma 2.2] and its proof.) Hence if

.\

R(ll) I 1I £1.\ Q(lI)
'0

is the error functional for the quadrature formula. it follows that

.\

R(lI) I LlI(fl R,cPlI(X; t) dt.
'0

where the subscript indicates that R operatores with respect to the variable .x,
and the interchange of order is easily justified. The next two lemmas sh(\\\
that

M(fl R1cPlI(Y; I)

is an L "'-monospline. Observe that

.1

I <PI/(x; t) elx Q,[cPr/(x: I)].
'0

LEMMA 3.1. L "'U:\ <PII(Y: t) dy] I; hellce. J~ <p,,(x: t) dy differs fro/ll the
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unique solution ifJ" * of L*0 L D*i0(0) =,0, j =c 0, .... n -. L hy an L *­
jJo/rnomial.

Proof A simple calculation yields

(d/dt) cP,,(x; t)

where rb" J(x: t) is the fundamental solution corresponding to D" 1 ..• DJ .

Since l. DJ * ... DII * where D;* (. LwJl D, it follows that

D,,* fJ cP,,(.\"; t) dx .. _.(.1_) -(/~ rcP,,(.\": t) d.r
Jo 11"" t (t. {

.)I cPf/·l(X; t) dx .. {

Repeated differentiation yields

.1

D~* .. , D" * I cP,,(r; 1) dt
• 0

and

.,
I II' l (X) dx
,{

.)

f" * I cPII(.\": t) elr I.
'0

The Jlnal assertion in the lemma is evident. I

LLMMA 3.2. QAcPn(x; 1)] is an L *-sp/ine.

Proal: First.

il I

Q,·[cPn(x; 1)] = L a;'U",[cPn(x: 1)] L CI"cP,,(~{,': 1).
/,=1 k~---l

Consider a typical term in the first sum.

Ui.,,[cPn(.r; t)]~· f h,;D;,'lcPn(X; 1) I
1- 1 y

for 0 I. A short calculation yields.

(3.5)

hilt)
_",1 ,.. f) ",f,,_:,!

11) I) I 11', 1(1,) / ... I 11",,(11/ 1) dt" 1 ... dt, .
'/ ,/./

Evidently.

~ 1 " I ) • f" :i

1\',(1) I II', 1(1,) I ... I 11"(/ lU" ~) dt" " ... dt,.
·f <f'f
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and so upon successive application of D;; j , •••• D1 * it follows that

forj 1, ... ,11. Thus the first sum in Q,.[4>n(x; I)] is an L *-polynomial. (When
I = 0 the right side of (3.5) should be increased by L~)~l ai[a'nWn(O)] which L*
annihilates.)

Consider a typical term in the second sum in Qx[4>n(x; I)],

.~:;: I: ,~ t1.t /I ~

4>,,(fk ; t) •... lI'j(fk) J 1\'2(tl) J 1\'3(12)'" I lI'nU" I) dl" 1 '" dl] ,
1 1 ,/

O.

Differentiating as in Lemma 3.1 yields

D2* .. , Dn*4>,,(gl,'; t) W1(gk),

0,

f ~; gk .

gk < I.

:;I.' f.

D *" '-I, (C . c.,)... 'Pn Sf; • Sic

and 4>,Mf;; I) exhibits the same jump in its (II I)st derivative as the fun­
damental solution 4>n*U; gl) Consequently, 4>,,*(1; gk) and 4>rMk; t) differ by
an L *-polynomial. These observations prove the lemma. I

Lemmas 3.1 and 3.2 establish that the remainder functional for the qua­
drature formula (3.4) can be expressed as

.\

R(u) ,( Lu) IV! dx
'0

for some monospline M EC J!;:,I' . On the other hand, from (3.1)

(3.6)

.t

J
1I dy

• 0

I'

I ai Ll,(lI)
-/o}

'.!.tI I

I bi U,,,(lI)" I ('AlI(fl,)
i =c. J!-~ ] I" - 1

.\I (Lu)Mdx d.7)
'0

where a i • CI• are given by (3.3) and

J! I..... 211.hi

Now (3.4), (3.6)-(3.8) yield

U,*(M), (3.8)

V 211 ,

L (ai' a/)U,(lI) L h,U,.,(lI) I (CI CI·')U(ti;) 0 (3.9)
I ] i. I' -l] /, ~-1

for all u CI/[O. I).
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The 211 boundary conditions U(u) c. 0, Uc(u) : °are equivalent to the
stipulations

DHll(X) = 0, j = 1, ... ,11; x ~~c 0,1.

For allll EO C"[O. I] satisfying these requirements, (3.9) reduces to

c

I (Ck - C//) IM/J C~ °
/:1

which manifestly implies

k I, ... , r.

Thus (3.9) reduces to

}) 2n

L (ai - a/) Vi(U) I biU,..Ju):: °
i=1 [=")1+1

for all u EO C"[O, I]. Tn particular, for U == Ui with Ui given in (2.4),

(3.10)

"I U/Ui)(aj - a;') .
i"",l

I Uc,/Ui) h j = 0
j=- ]/-:-1

(3.11 )

for i= I, ... , 2n. This 2n X 2n system has matrix

II. Ui(Ui)
II c~, I, , 211
j j = I, ,p

which is the transpose of the matrix

Uc,/uJ ii'
i c: 1, ... , 211 I ,

J ?,I.i =, P .... , _ll L

where Cand U, are defined above (2.5) in Section 2, and Ui is the ith column of
the indicated matrix. Since C is nonsinguJar the coefficient matrix of (3.11)
will be nonsingular provided

Now

where

W(u] , , un)(O)
W(u1 , , un)(l)

W(u,,+] ,... , u2 ,,}(0) II
1¥(Un 11, .. ·, U2 /1)(l) j
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From (2.1) and (2.4)
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~V(UI ....• UI/)(O) diag(w\(O), .... 111/(0)).

~V(U/I 1 '" • u"I!)(O) O.

Hence. the system (3.11) is nonsingular ill'

det W(U
"

] ..... u",J(I) 0

which is the case because the kernel CPU. x) u,(x), i I ..... 2n and ()
x I. is ETPn(x) (see [I. Chapter 6. Theorem 1.2]) and so

det W(II/1 I ..... U"")( I) O.

Consequently, (3.11) implies that

af a/ . I ..... p.

h, O. P 1..... 2n.

Thus, the quadrature formula (3.4) is induced by a monospline :vl f~ ./!~.,

which satisfies the adjoint boundary conditions V*( M) 0
ff M] . M 2 E .4!f.~,1 both generate the same quadrature formula. then

.\

I (Lu)(/Id]
• 0

o

for all u E CI/[O. I]. Since Lel/[O. I] qO. 1], it follows that J'vl\
following theorem has been established.

:H2 . The

THEOREM 3.1. There is a 1 : I correspondence hetween Cflladraturejimnulas
ol'therorm

Q(u)
I'

I a/Vi(u)
i- 1

I c".u(g,,)
/;.\

(3.12)

which are exacl on L-pol)'/lOmials and L *-monosplines. M. salis/ring Ihe
adjoinl boundary conditions. V*( M) O. II' Q(u) corresponds to M. then

(if U'i(A1). I ..... p.

D*" \M(g".) D*" I /'vI(g" )
c/, -~ ---~~--~~'~(E)-

.1

R(u) .1
0

(LII) /'vi dx.

k I .... , t.
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Let «(, be the class of quadrature formulas (3.12) which are exact on
L-polynomials. Let :J1J [resp., :J1J*] be the class of functions satisfying the
boundary conditions U(u) = 0 [resp., U*(u) 0].

A quadrature formula QEO 'f/ is best in the sense ofSard for the class «(, if

where

sup i R(u)' .•~ inf sup : R(u)l,
illliiL<l Qcre 11"IIL<l

,I

U i 7. I [Lu(x)]i dx
'n

(4.1 )

and R(lI), R(u) are the respective error functionals for the quadrature for­
mulas Q, Q.

The analysis leading up to Theorem 4.1 below is due to Karlin in [3].
(Theorem 4.1 below is essentially Theorem 1.2 in [3].) In view of the error
formula

.[

R(u) I (Lu) M dx.
'n

the Schwarz inequality together with the condition for equality, and the Llct
that I. maps Cn[O, I] onto C[O, I], (4.1) is equivalent to

(1 I
, NI(x)1 2 dx = min r· [M(x)12 d,

on J/~./'33")·n '
(4.2)

where iii] E utt.~,r(;a1*) corresponds to Q. Thus the problem of finding a
quadrature formula best in the sense of Sard is equivalent to finding a
monospline in ~:,r(.qg*) which best approximates zero in 1.2 [0, I]. Since
utt.;,l%'*) is closed and convex, this problem has a unique solution M provided
utt,t,l'a1*) is nonempty (equivalently, '6 is nonempty). Furthermore, since
utt;.r<-qg*) is the translate of the subspace 9';.r(:J1J*) by At, (4.2) states that 0 is
the best approximation to M in 9";,1(.%'*). Thus M is characterized by the
orthogonality requirement.

/

,1

M(x) S(x) dx ceo 0,
on

The following theorem has been proved.

THEOREM 4.1. Assume ('(; is not empty (see Theorem 4.2). Then the
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quadrature formula best in the sense of Sard corresponds to The unique mono­
spline 111 E <ll,i'".(88*) determined by the orthogonaliTy condition

d

j M(x) Sex) dx
'0

0,

The orthogonality condition in Theorem 4.1 does not provide a practical
characterization of M because a basis for 9'.~,r(86'*) is not readily at hand in
most cases. The following result, Theorem 4.2, provides a useful practical
determination of M in terms of an explicitly available system of linear
equations. Theorem 4.2 is the extension of Theorem 3.1 in [3] to the case of
mixed boundary forms.

For v S E 9';;')88*) the basic integration by parts formula (2.6) yields

because L *S(x) °for x ¢ {tlJ

THEOREM 4.2. The class '{; of admissible quadrature formulas is nonempTy
if there exists a monospline III E o4I2n ". (see Section 2for the notation) such thaT.

in which case

U(IIl) = 0,

U*(LIIl) oc= 0,

ZV(t,J = 0, k 0=0 1, ... , r.

(4.4)

M=LIIl

determines the quadrature formula best in the sense of Sardo

Proof If III satisfies (4.4), then .M ..~ Lili E o4l:. r (&6'*). (Indeed it is easy to
confirm that Lo4z2n .r E 041:). Hence the class '6 is nonempty. From (4.3) with
u· III

.1I X1s dx
'0

0, (4.5)

and M determines the best quadrature formula. I

Let N 1f2n + S where S E Y;.n.r . Then (4.4) is equivalent to

U(S) = - U(1f2n),

u*(L8) == '- U*(L1f2JJ.
8(t,,) .~ -VJ2,,(t/,,), k I .... , r.

(4.6)
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Theorem 1.3 in [3] states that '(j is nonempty iff the determinant of the
system (4.6) is nonzero. This result must be rephrased in view of the following
example; in fact. the reasoning used in Theorem 1.3 in [3] is essentially that
used to prove Theorem 4.3 below. Consider quadrature formulas of the form

Qc(U) ~c cun).

Among these quadrature formulas precisely one, Q1(U), is exact on poly­
nomials of degree o::;n - I where n =- 2. (Here the ordinary polynomial case
is treated with L =~ d2Idx2.) Of course, Q1(U) is just the familiar midpoint
rule. Tn this case conditions (4.4) on N E ,/1(1.1 are,

U*(N") 0,

N(D =cc 0,

where U*(u) = 0 is: u(O)== u'(O) = u( I) = z/(1) == O. A short computation
yields

_, x J 2- J I
N(x) = 4! - 4! + B(x - 1/2) - "6 (x - 1/2r;

with B an arbitrary constant. Consequently, (4.6) must have a zero deter­
minant. Finally,

and it is easily checked that A} determines Q1(U) as it must.
In view of this example it is useful to determine when (4.4), equivalently

(4.6), determines N uniquely.

THEOREM 4.3. The requirements (4.4), equivalently (4.6), determine N
uniquely iff the only polynomial in !Yn(::?8) interpolating zero data on {g,,·};;c 1 is
the zero polynomial. Thus, N is unique when r ;?; n.

Proof Suppose (4.4) uniquely determines N E u112n ,,.. If P E !Yn (84) inter­
polates zero data on {~Z}. then N1 = N + P satisfies (4.4). Hence N N]
and P O.

Conversely assume zero is the only polynomial in !Yn(PlJ) interpolating zero
data on {~,.}. Let So E c~n,l be a solution to the homogeneous system

U(So) = 0,

U*(LSo) = 0,

So(£\) == 0, A J..... r.
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corresponding to (4.6) and let SI LSo ' Clearly, SI E V:.,.(::.d*). From (4.3)

.JI S,(.\) S(.\) d\
'0

o. S (j~.r(':.d*).

Thus SI
Hence, So

0, i.e., LSo 0 and so So (cc 1',,(.:1) interpolates zero data on 1~I.:.

o and (4.6) has a unique solution. I

Remark 4.1. Conditions (4.4) in Theorem 4.2 are sufficient to ensure that
the class of admissible quadrature formulas, (6, is nonempty; however, it is
not known whether these conditions are necessary as well. The following
conditions, rather close to (4.4), are both necessary and sufficient for (6 to be
nonempty,

U(S) O.

Ut(L;\)

I' ['D*" 'S(I:",-) D*" 'S( I: .]I ~ Sl~ I. :\(~tl-;-,:;n;)
I, I

o.

o. S I' J,~).;9*).

(4.7)

If all these conditions are satisfied Ai L]I, corresponds to the best quadra­
ture formula as is seen by the argument of Theorem 4.2. On the other hand.
if ((, is nonempty and lVI E Y.~).0'*1 determines the best quadrature formula.
then the boundary value problem.

UI: iii,

U(!\j) O.

is solvable because the orthogonality property (4.5) guarantees that Al IS

orthogonal to all solutions of the homogeneous adjoint boundary value
problem

L *1' 0,

U*(rl O.

It is easy to check that lV '= .1t211 • 1 and also U*( LPI;)

from (4.3), (4.5)

.J

o ~ I lVIS dx
, 0

for S E Y':.I(.!d*), and conditions (4.7) hold.
In the next section, conditions (4.4) arc shown to uniquely determine :\.

for some important classes of quadrature formulas involving mixed boundary
forms.



BEST QUADRATURE FORMULAS

5. SOME IMPORTANT QUADRATURE FORMULAS WITH

MIXED BOUNDARY FORMS
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The determination of 1111 corresponding to the best quadrature formula
from (4.4) involves solving the (2/1 + r) (211 1- r) system (4.6). In expanded
form this system is

rI

I GijDj'lS(O)
je}

"I bijDj-IS(I) = Ci'

jl

J, ... ,p,

II 11

I G/jD*
j1

LS(0) + I bi7D *j 1LS(I) I,
j.-l j, 1

p 1, ... ,211, (5.1)

0, k = I, ... , r,

e (e;) U(¢;2,,),

Fe en ~- - U*(L¢;2r,).

Here

A = G,~ I, b*i'I.i !

are the matrices such that ji A * , B* I; is the matrix of the adjoint boundary
forms U*(u) constructed in (2.5). From Section 2,

*,1_ (-1)j-1 ...
D -- ---.~_. D"tj 1 D"+1

1\ n-t-2----.i

and the boundary conditions in (5.1) can be expressed in the more convenient
form

11

I GijDjlS(O) .' I buDHS( I) ~... Ci '

i-I jc 1

..= I, .... p,

" *( I)j-lI Gi: ------ D"'j-IS(O)
j 1 \\" +2_j(0)

pl,... ,211.

(5.2)

To guarantee the existence of a spline S E 'Y;".r satisfying (5.1) appeal is
made to the basic interpolation theorem of Melkman [6], see also Karlin and
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Pinkus [4], which is stated as Theorem 5.\ below for easy reference. A set of
boundary forms

'"L ei,Di IU(O)
i-cl

is said to satisfy Postulate J i I'

IfoDi lu(I),
j 1

1, .... k

(i) E and Fare k III with k min( 2/11, III r).

(ii) the k 2m matrix D

l;'.~m :-1 .i

do ,where

I, k; j

I ., k; j

I ..... III.

m 1.. ... 2m.

has rank I, and is sign cOllsistent o( order k (SCI,). i.e., all nonzero subdeter­
minants of D have the same sign.

THEOREM 5.1. Let the knots {~/J;, l' 0 t,
Given points of interpolation. 0 < Xl X" ,

{e,JL . { r,l ;'11' I. boundarv condit ions.

~, I, be fixed.
I. associated real data

I a"DiIS(O)
, I

I buDi IS( I)
i 1

C i • I ..... k

which satisl\' Postulate J. and interpolation conditions

sex,) v. , I ..... n r k.

there exists a unique spline sex) at degree n I with knots {t"'};,c1 satish'ing
these boundary and interpolation conditions ifffor ,lome s, () s k. there
exists a collection of indices i 1 i" • (1 i ,. n). and )1

)/./ . (n ii, 2n) for which

D(~'''' .. .J) ()
/1 .... , /, • II , .. .. ft.,

while the sets {x,,], ftC}. {i,:, {J1l: satis!.\,

(i) ifk si- r. then

.Yl' ~, l' S J... .. r.

2n i,. s,l-----I< iI~ " I I, IL L .... k r .\.

where {i/E-' is complementary to {i,i ~ in {I .... , n:;
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(ii) if k < s -[- r, thel1

367

v = 1, ... , r.

In (i) and (ii) the conditions are to apply when the subscripts are meaningful.
In the application of Theorem 5.1 to the case at hand, the matrix of the

boundary forms (5.2) has the special form

A)I:II 0 Bp " II 0
o A12n-p):'n 0 Bi~n-II)Xn

Use of Laplace's expansion and some elementary simplifications show that
boundary conditions (5.2) satisfy Postulate] iff the matrices E = II ei; and
F Ilf; 'I are SC ,I and SC2n - 11 of full rank, respectively, where

1== I,,,.,p;j ~.= 1, ... ,11.

and

eij --::;: Grl- I); }'-~]I

i = l, ... ,p;j = 11 1,. ". 211.
(5.3)

f;= aik-1) I II,

,~ b;2n'-1 ;( ~ 1)211+1--j,

i = p -;- I, ... , 211;j ~ 1, ... ,11,

(5.4)
i = p + 1, ... , 2n;j = 11 + 1,. .. ,211.

(For convenience the rows of F are labeled p + 1, ... ,211.) In fact, if D is the
matrix constructed as in Postulate J for boundary conditions (5.2), then the
only possibly nonzero subdeterminants of Dare

De,... .' ,211)
(Xl , ... ,"'/ , f31 ,,,., f311 ' Yl , ... , y,. , 81 ..... 8""

x F(Pf31- i
_
1

,... _ ,_ _,_211) (5.5)
11, ... , f311 11, YI - 11, ... , Y" 11

where

<; L'lel < ... < Cit n < f31 < ... < f311 2n < YI < ... < y,.

< 3n < 81 < ... < 8". -< 4n,

t + II' = P, u -+- v = 211 - p,

and E is a nonzero numerical factor whose sign is independent of the column
indices. (The factor € involves products of 1/wlx) for x = 0 and 1, apart
from a factor ± 1.)
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The next theorem, of general importance for boundary value problems,
reveals that sign consistency assumptions on a set of boundary conditions
implies analogous sign consistency for the adjoint boundary conditions. It
will be used to show that F is automatically SC2n~ J) with full rank whenever E
is SC p with full rank. This fact is of evident practical importance for deter­
mining when boundary conditions (5.2) satisfy Postulate J.

THEOREM 5.2. Assume that the boundary forms

1/

U,(u) = L: aijDHu(O)
j~J

I b,jDJ IU( I),
j'-l

1" .• , P

are such that the matrix D1 ii dW is SC" a/full rank where

aij( _. 1)1 J"", I. .... p; j ~- I. .... n.

Then the adjoint boundary forms

I. .... p;j nil,. ... 2n.

"
V i(!') = I ai'p*J'l'(O)

j=l

1/

'" b*D*' 'l'( I),
~ 1)

j·l

p 1, ... ,2n

constructed in (2.5) determine a matrix Dot.
rank where

d~) Ii which is SC2n - 11 ofjidl
iJ .

p I, ... , 2n; j 1.... ,11.

P i l ,... , 2n; .i n +- I, ... , 2n.

Proof Let V = (C- 1 )* S* denote the matrix in (2.5). Then,

and

p 1..... 211;.i =. 1, .... 11

ri,} +u • 1=· P I, .... 2n;.i I ,.... n.

Let 1 ~jl < ... <.is ~ n < k'"l < ... < k 211 _ P 2n. Then.

(
p 1,... . 211)

D*.. .
.1J ,•.. ,J." k" J ..... k2n~'I)

1 ~ k"J ..... 3n
. 211).

k2n JJ
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By the Cauchy-Binet formula

369

v (~~ I .....
.11 ..... .1, • 3n +-

, 211)
- k H1 , ... , 311 +- I - k 2n - p

< s* (~1 , .
.Ii ,· ]s, 311 -1- 1-- k H1 , ... ,3/1

~~ (C-l)* (P: I,... . .2n)
/11- I -./"... , /1 -+- I -.iI' k"1 ,... , k 2n - p

because of the special form of S*. Thus,

'2JI,- j} I
>< n--~ f1 --~-

1-.,] lI'rHl-h(O) I~s-] ll'k,rJI)

X ('-1 (111- I - I, ,.... 11
P +- I ....

But (see [I, p. 3]),

I - II , kS+ 1 , ... , k 2n -,,)

,2n

C-1( -:- 1 - I, ,.... /1 i- I -.iI' k'+l ,.... k 2,"2-'1'/')
P T- I, ...

C (1,... ,P)/d "->< _Of , • I I ' , et C,
11 + 1---.In---' ..... I1--,-I-.h,k1 .... ,kpf ,-n.

where

-;; .iI' < ... <j~-s .s.: /1 is complementary to fU: in {I, .... 11},

n 211 is complementary to {kl]:~-;-)J in

{11 1.... , 2n].
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" (' (' I ,...
,- ~ 11 I -- j;,_, ..... 11

Next a short calculation shows that

C ('I, ...
n -~ I -j;,-s .... , 11

rI •. __

D1 (11+ -j;, __ , ,... , 11

Thus

j/,
311\- I - k;"" ..... 311

(--l}';()' P)i,<;("; \1/2 (i l l)s (Ii .~)(j':l) (s·p IiI)(s }i -ji)

,<: 1 :!TI JI

TI ------ TI __ I ---;

11 ]j'" '1 i,(O) ;", 1 11'",_ ,,(I) det (

(

I ....
-/ D1 ,/1 ._'. I -- J;, -s , ... , 11

3n I
;1'
" .... , 311

The second factor on the right simplifies to

I )'d T -l HI ]J--n--11( ]/-11) /2.

Combining this with the first factor in the preceding equation for Ll and
simplifying yields
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s l 2n-))

(-- 1)/111';])) n,-~~- n --~­

kl )\'ni]-i/(O) k,,) Wk,-nO)

I

det t

(

1,...
D] 11 I -i~" .... 71-- I-iI"

3n I - k;"" " ,... , 3/1

which proves the theorem. I

Remark 5.1. The proof actually shows that D] IS SC /' of full rank iff
D x is SC'II _II offull rank.
Theore~ 5.2 yields

THEOREM 5.3. Boundary conditions (5.2) satisfy Postulate J iff the matrix
E in (5.3) is SC)I offu11 rank.

Proof The definitions of E, F, D] , and D*l' yield

,Ji)
I -, 3k]'

(

I, ...
1)(11 ")(l'-II)D ,'/ I I -" / : J .,1 -r - III " •.. , l ,- --- ,11 '

311t- I k;" II ,.... 311

and

The last equation in the proof of Theorem 5.2 can now be expressed as

F (/~ , I ,... , 211)
1J ,···,J8' k'l ,... , k 21l -_])

(-_I)/(r+n) ' I 2n-)I I
----~-, n-- n -----

det C '~1 11",,+1_1,(0) '~H1 1\'", n(l)

(

I, ...
'/ ,1"/" E 11-'1" 1 -}", .... ,11 i)',

371 ~- I - k;" "" .. ,3/1 I I
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Thus E is SC II of full rank iff F is SC~1i " of full rank. The theorem follows
from the remarks preceding (5.3). I
Application of this theorem in conjunction with Theorem 5.1 yields

THEOREM 5.4. Let E and F be given by (5.3) and (5.4). Assume E is SC" of
full rank. Then there exists a unique monospline R E Jt2nJ satisfring

U(]\/) 0,

U*(LS) 0.

iV(~7) 0. k L ... , r,

(5.6)

iff there exist indices {O:o}, {P,,}, {Yc}, {Oil} such that

211, ... , 01/"
0,

F(P 1, ...
PI - II •... , P" -. II. YI

where t w P, u + v C._ 2n - p, and the indices

(XI (Yt n p] <:, ... Po
2n <~ Yl < ... < Yr 3n < 8 S'c 4nI

must in addition satisfy: Let {i] ,... , i,] {O:I •.... 0:, ' Pl .... ' P,,} SO s u
and til .···..i2n J {y] ,... , y", 81,..., Sir}'

Case 1. AMume r == 0, i.e., no knots occur. Then the indices must satisf.\"

4n --'-. I --- .i21/'I-<" i,/. L.... 2n .1'.

Case 2. Assume r ;?: J. Then the indices must be such that s °and

s -'- r, 4n -1- 1 - .i2n(i) if 2n
while

(ii) if2n < .1', r, then s < 2n.

1-:.: IJ. 1, ... ,2n r .1'.

Here {ini" < is the complementary set oj"indices to {iz}~ in {J ,... , 2n], and the
above conditions are to apply on(v when the subscripts are meaning[itl.

Proof With the sets {o:,,}, {Pb}, {y<J, {Oil}, liz}, and {j,} defined as above,
(5.5) shows that

DC,"" ,211) / °
):1"'" eXt, /31"'" f3/l ,Yl ,... , Yr, S1 ,... , O'U"
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iIf both determinants listed in the theorem are nonzero. By Theorem 5. I
there exists a unique monospline IV satisfying (5.6) iff these determinants are
nonzero for indices {ill and {Jl} satisfying the stated conditions. (Note that
the knots and points of interpolation agree in this case.) I

Remark 5.2. If p = 0 (resp., P == 2n) the condition on E (resp., F) is to
be dropped.

Remark 5.3. The adjoint boundary forms and hence F must be known if
S' is to be computed explicitly; however, the conditions in the theorem
guaranteeing the existence of IV can be stated without explicit reference to
the adjoint boundary forms. Indeed, by the last equation in the proof of
Theorem 5.3, the condition on F is equivalent to

- 1';, ,. .... , 411
,P)

1-1'1'
o

where {f:lI'J~' U is complementary to {f:ld~ in {n -- 1, .... 211}. and {Yl'};"" IS

complementary to {Yl}~ in {2n + I.... , 311}.

Remark 5.4. It is interesting to consider the example in Section 4 involving
the midpoint rule in the context of Theorem 5.4. In this case p = 0 and F is
SC4 of full rank. Since r == I, Case 2 of the theorem is relevant. It is easily
checked that Case 2( i) applies and that the index requirement is not satisfied.

EXA\IPLES. (a) Periodic boundary forms. Because of their frequent oc­
currence in applications, periodic boundary forms are among the most
important mixed boundary forms. In this case the matrix D itself is readily
available

(_I)"t 1

( _.. 1)"12

D

(..-Il" -I

assuming that all the functions w,(x) are periodic with period I because then
the boundary forms are self-adjoint. It is easily verified that D is SC271 iff r is
odd in which case

i,' = 411 1- 12" ._) .<_{,

otherwise.

where I I. .... 2n- s. {i,'}i/l H is complementary to {id; in {I, .... 2n}. and
1 i 1 < ... < i, 211 <.i) < ... < .i2,,< 411. Since r is odd, Case 2 of
the theorem is relevant. If I r < 211. choose s 211 -- r. Then s ~. 0 and
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S -1- r 2n. If r ;?o 2n (hence, r 2n) choose s I. [n either case all the
stipulations of Case 2 are met and N is uniquely determined.

If the wix) are not periodic, calculation of the adjoint boundary forms
shows that the matrix D has positive factors mu[tiplying the columns II - I, ... ,
3n above, and so the previous analysis can be carried out with inessential
changes. Alternatively, the adjoint boundary forms need not be calculated
at all in view of Remark 5.3. For periodic boundary forms the matrix E is

I)" 1/ 1

( -- 1)'1/

I)'

and E is Sen iff r is odd in which case

E (I ,." '2/11
1
) =,~ ~/(o-' 1)/11/1

1

1)/", -'oXlt'heru:!.lsle',
~ (Xl"'" eXt, 81 ,-- 2n, ... , 8", _ "

for I 1, ... , w. Likewise,

6iC 1-1,

E('" " ',2n I I - f3" 1/ , •• " 2n

\ ( __ 1)'11('11';-1)/2,

10.

411'

otherwise,

Yrll' r,

for I -' I, ... , I'. Thus to obtain nonzero values for the appropriate E sub­
determinants

,.
4n 8",-, 1 I. .... W,'XI I

f3/ 411 I I -,- Y,+1 r 1,. .. , r.

If {. . 1 -- - { f3 f3 I, d { . . 1
11"'" l,J - (Xl"'" (Xt, 1 , ... , IIj an Jl,···,.I2n-sJ

the previous stipulations are

1, ... ,2n s.

Now it follows exactly as before that 1V is uniquely determined.

(b) Antiperiodic boundary forms. These forms can be treated in the same
manner as periodic forms. In this case, r must be even for D to be sec" .
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6. SEPARATED BOUNDARY FORMS
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Theorem 5.2 allows us to refine some of the results in [3] where the bound­
ary forms are separated. In this case Postulate J is equivalent (see [4]) to
Postulate I stated below.

Assume separated boundary forms,

n

Ui(u) = I aijDjO lU(O),
j,1

I ec.' 1, ... , p,

(6. I)

and let

I bi)DHu( I),
j~l

I C.c I, ... , q,

A c= Ii au Ii , B =c :1 bi) II .

These boundary forms are assumed to satisfy

Postulate 1.

(i) p + q ~ 2n;

(ii) A = il ai ,{-l)i II is SCli with rank p;

(iii) B is SCq with rank q.

Notice that the rank conditions imply p .~ nand q ~ n.

THEOREM 6.1. Let the boundary forms (6.1) satisfy Postulate 1. Then
adjoint boundaryforms can be constructed in (2.5) to have the form

and sati.\Jj;

n

Ui*(u) = I a~D*i-lu(O),
jd

n

u* (u) = "' b*.D*i-'U(I)
~:-n-p ~~] ,

j~.1

i= I, ... ,n-p,

I == I, ... , n - q,

A* = II aij;1 is SCn _ p with rank 11 -- p.

B* = II b~( -1)1 !I is SC n _ q with rank II - q,

where B* = II b~ II .

Proof Using notation similar to that in Section 2, if

_IIA 0C _0 I! S',: 0
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then there are matrices A and B of order (11 -- p) 11 and (11 - q) /1.

respectively, such that

A 0

(, 0 B
A 0
0 n ".!.n :!-11

is nonsingular because A and B have full rank. There is a permutation matrix
P such that

pC

where

B
B

and Al and B1 are nonsingular. Thus,

A] I 0
o B~]

With S defined as in Section 2. it follows that

P(('l)*S*

for certain 11 11 matrices A 2 and B2 • Consequently, the matrix (C 1)*5*
used to construct the adjoint boundary forms yields separated boundary
forms of the type stated in the theorem.

In the context of Theorem 5.2 for separated boundary conditions D,
dg) II where.

L.... p:j L... , /1,

b; JI.~n+l-j ~

o.
p ,I,... ,p q:j 11

otherwise

I ,.... 211.

An elementary linear dependence argument (see [4]) reveals that the only
possible nonzero subdeterminants of D] have the form

D (L ...
1· .

.Ir , ... , ./1' • 11

.j!

/.;, ..... 11
(6.2)
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for I )1 < .. , <)p nand 1 :'(.• k1 < ... < k" n. The determinant (6.2)

is easily seen to be equal to

Hence D] is SCp~Q offull rank iff the boundary forms (6.1) satisfy Postulate I.
Entirely similar reasoning confirms that, for the case at hand, the matrix Doi'l
in Theorem 5.2 is SC2n -(JJ+Q) of full rank iff the matrices A oi' and E* defined
in the theorem are, respectively, SCn_" and SCn " of full rank. Now
Theorem 5.2 implies the desired result. I

Theorem 6.1 implies the following strengthened version of Theorem 3.2
in [3].

THEOREM 6.2. Let the boundary forms (6.1) satisfv Postulate I. Then there
is a unique monospline 2V E ,.#/2n . , satis./j.ing

U(2V) =cc 0,

Uoi'(L2V) = 0,

L\\glc) =, 0, k 1, ... , r,

iff there are indices 1 "c i1 < ... < i" "'; n < ip + 1 < ... < in 2n, I
)1 <. ... )Q n <)Y+1 <. ... <)n ~ 2n such that

A (.I,""~ ) 0, Aoi' e, ..· . n - p) 0,
11 ..... in -11

7
11 , ... , I pi \1 Jl--:-l

-

(6.3)
B ( .1 .... , q. )

7'- 0, Boi' ( ... ,.11 - q)
7~ 0,

·.II ,.... ./" ../". ]
- 11 ..... ./n .._- 11

and ifn r,

)"
.,

I, ... , 11 r (6.4)I/..L ---:--1' ~ f-L

where {il'}; is complementary to fil}~i ill fl, ... , 2n}. Consequently. ifr ;::: n. N is
alwan uniquely determined (cf. Theorem 4.3).

Proof The matrix of the boundary conditions which 2V must satisfy at
x °is (cf. (5.2»,

••••• )1

j--=l •...• fI

O(n_p) "

0,,"

(-I)j [au/lI'n .;(0) i ·[ n I'

I -l n
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The matrix Al constructed as in Postulate I is

!( 1)j au 0

Ol( 1)" I ai~!It'II' 2 ,(O)i

Evidently, Al is SCn with rank n ilT A is SC n with rank fI and A* is SC II "

with rank n - p. The matrix of the boundary conditions at x I is

hij :,ii=--ol, •.•• (1

j,~ I .... , n

0(11 __ (1»11

Oq':n

lVI/II '" 2~/l)ili I, . .r,-q It
i -l, .... n

which is SCn with rank n iff B is SCq with rank q and ill' is SCn~q with rank
n -- q. By assumption JI and B are, respectively, Sen 1J and SCn~q of full
rank. Thus. the matrices A 1 and BI satisfy Postulate I with n replaced by 2n, p
replaced by n, and q replaced by n. The theorem now follows by invoking the
basic interpolation result, Theorem 2 in [2], for the case at hand. I

Remark 6.1. The index restriction (6.4) was inadvertently omitted 11l

Theorem 3.2 in [3].

Remark 6.2. Just as for mixed boundary forms (see Remark 5.3) it is
possible to express conditions (6.3) in Theorem 6.2 without explicit reference
to the adjoint boundary forms. Specifically, the inequalities involving A and
B* are equivalent to

A('"
f'N ,... ,211 i;i

.PI 0, (6.5)
211 Il 1

B (L...
I .. ') -! I j~

,q) 0, (6.6)
.211 - .Ill ,... , ~n q -,

where {iz'K and Ch'}~ are complementary, respectively, to {il}~ and [jl}~ in
{L.., 2n}.

The following result generalizes Theorem I in [8]. [t applies in particular
to boundary forms encountered in the study of vibrating physical systems.

THEORE"" 6.3. Consider quadrature formulas of the forlll.

1JrfJ

Q(u) ._~- I a;U;(u)
i ]

,-

I CI.-U(~h)
h-]

(6.7)

with boundary/arms (6.1) satisfying Postulate I and the requirements

A(" ,P) -t 0,
, I, , P

Be, .. ·,i{) O.
1, .... q

(6.lJ)
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Let C(f be the class of quadrature formulas (6.7) which are exact on L-polyno­
mials. Then C(f is nonempty iff there exists a monospline R E J/211 ,r satisfying

v(R) = 0,

U*(LlV) = 0,

i\\t,J = 0, k = I;..., r.

(6.10)

Furthermore, R is uniquely determined by these requirements iff

r>n--(p+q).

Proof Let

{il}~' = {1 .... ,p,l1 I, ... , 2n - pl.

Then

Consequently,

{jl}~ = {I, ... , q, n- 1, ... , 2n - qi.

{iz'}~' = {p 1, ... ,11, 211 ~ P + I.... , 2nl.

{jz'}~' = {q ~- 1, ... , n, 211 - q I. .... 2n:.

(6.11 )

(6.12)

A (.. I, ~) = A ('21,... , ., I." .P) = A ( f!) 0.
11 Tp IT -- I -- In , .... 211 - - In-IJ,ll p

and

B ( !, q.) = B ('I, ... ,
h ·.Jo 2n -t-- I

_. 'i.. _ -, ,q) = B('- .. ·,q)
./n .... , 211 • 1 ./n-0+1' 1, .... q

o.

In view of Remark 6.2, the requirements (6.3) of Theorem 6.2 hold for the
indices (6.11). Furthermore. in the event n > r. there will exist indices
satisfying (6.3) and (6.4) iff the indices (6.11) satisfy (6.4) because the selection
(6.11) determines the smallest possible /,s and largest possible i"s. Conse­
quently. there exists a unique monospline R satisfying (6.10) iff either
r n or. if r < n. the indices (6.11) satisfy (6.4).

From (6.11) and (6.12).

and

j,,= 11·

~c n --!- 11 - q.

11 =c, I.... , q.

11 = q + 1, .... IT.

= 1/ -1- 11,

11 = 1..... 1/ - p,

fL-~ 1/ - P + 1, ... , IT.
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Thus, (6.4) fails to hold iff there is an index fL such that

q fL II r.

and either

11 fL q P -fL ---,-- r. if fL r II p

or

II Ii.- q II fL r. if f.L .:. r II p.

The last requirement can never be satisfied, the two before it are equivalent
to the existence of fL satisfying q Ii.- II r p. i.e., to q < II· r p.

Consequently. S' is uniquely determined iff r II (p q), which proves
the last assertion in the theorem.

The analysis above establishes that the existence and uniqueness of an ,\
satisfying (6.10) occurs iff r II ( P q). By Theorem 4.3, '6 is nonempty
if an N exists satisfying (6.10). Thus. it remains to show that II," exists satis­
fying (6.10) when 'l, is nonempty and II (p " q) r O. Construct
1\;1 E .f{~"J satisfying UUV]). 0 and U*(L1V]) ~.. 0 as in Remark 4.1. Fix
points 0 Xl X.I I and data)'1 ..... )'A where ,\ n ( p q). By
the basic interpolation result, Theorem 2 in [2]. there exists a unique L·
polynomial, P. such that U(Pl 0 and P(xI ) YI • I =. I..... A. (Indeed. the
hypotheses of that theorem are met using the indices {ilK {/}i and {ir}~

{1m, By further specifying XI ~I and YI 1Vl(~I) for I I,. ... r (recall
r < A) it follows that S {v'] P satisfies (6.10). I

Remark 6.3. Schoenberg's result, Theorem 1 in [8]. is the uniqueness
assertion of Theorem 6.3 when p q and the boundary forms are specified by
the matrices

A B II)' On. P ,

where I)) is the p p identity matrix. The uniqueness result is quite useful in
the actual calculation of IV; see [8].

7. BOUNDARY FORMS FOR VIBRATING SYSTEMS

The results of Section 6 will be used to determine best quadrature formulas
based on the specific boundary forms.

Ui(U) 1)' tll(O) : 1)" [' i lCiD"-iU(O). i . J..... p.
(7.1 )

Up i( u) IY l u(1 ) I)"" diD'" 'I/(J). J,...• il.
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where 0 p, q n, 0 Ci , di • These boundary forms arise in physical
oscillation problems (see [I, Chap. 10, Section 7]) and were treated in [3]. The
results below sharpen Theorem 4.1 in [3]. The assumptions required on the
c\ and d's in (7.1) and the attendent analysis are somewhat different according
as n is even or odd. Suppose n is even. the case of primary physical interest.
(Comments on the situation when n is odd are given at the end of this section).

It was shown in [3] that the matrices A and B of the boundary forms
corresponding to x 0 and x I in (7.1) are, respectively, SC IJ and SCq of
full rank. (This was done by direct evaluation of the determinants in question.)
Thus. the boundary forms (7.1) satisfy Postulate I and, additionally. it is
easily verified that

A (ll·····P) O.
. ,... , P

B C)··· .. q) O.
,... , q

because of the special form of A and B. Appeal to Theorem 6.3 yields the
following refined version of Theorem 4.1 in [3].

THEOREM 7.1. Consider the class (6 of quadrature formulas (6.7) exact all

L-polynomials, with boundary forms (7.1). The class rr;' is nonempty iff (6. 10)
has a solution iV. Furthermore, R is uniquely determined by (6.10) if(r n--
( JI q).

Remark 7.1. S may exist. equivalently (6 may be nonempty, when
r 11- (p -!- q). The example of Section 4 using the midpoint rule is a case
in point. There 11 2. r Land p q O.

Remark 7.2. The preceding discussion as well as that in [3, Section 4] is
easily modified to cover the case when 11 is odd. However, it must be assumed
that. for I [n 12] -: I.

(-I)' -- (-I )/' c, O.

and when /) I. that.

1, .i = I, ... , P -~ I.

These assumptions and corresponding ones on the d's are needed to insure
that the boundary forms (7.1) have full rank.

Remark 7.3. An alternative proof that the matrices A and Bare SC IJ and
SC, offul! rank can be based on Theorem 2.2 in [I].

(>+0/20/+-6
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8. EXTENSIOr-.:S AND REMARKS

8.1. Best L 2-Approximations

The preceding results characterizing best quadrature formulas can also
be viewed as characterizing the best monospline approximation to zero in
L2 [O, I] among all monosplines satisfying specified boundary conditions and
having prescribed knots.

8.2. Weight Functions

The previous results and their proofs extend immediately to quadrature
formulas approximating

.JI u(:\) lI'(x) d.y
'0

where lI'(x) is a posItIve, continuous weight function. The only change
necessary is to redefine ifl" in the definition of monospline to be the unique
solution to the initial value problem

Lli H'

Di-1U(O) O. J I ,... , /I.

A definite integral representation of ifln is available by integration.

8.3. Multiknot Quadrature Formulas

The analysis of the preceding sections extends to include the important
case of multiknot quadrature formulas

I'

Q(lI) L a;U;(u)
i -,~ 1

( Hj,

L L ('ki Di IzMd
I. 1 i·1

(8.1 )

which are exact on L-polynomials. Here

/I. I ..... r

specifies the multiplicity of the knot ~/. . The analog of Theorem 3.1 estab­
lishes a I : I correspondence between quadrature formulas of the form (8. I)
exact on L-polynomials and L *-monosplines of the form

M(x) ifl" *(x)
YI

L hvllv*(x)
,. I

ILl,

L L dki4>,~ 1 i(X: ~I)
1:--1 j=-l

satisfying the adjoint boundary conditions. U*(M) O. Here 4>~'-J I is the
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fundamental solution for D,* ... D" * constructed as in Section 2. If Q(u) in
(8.1) corresponds to M. then

a;

('.t,,;

R(u)

D*" 'l'Vf(tk) D*" M(t"
._--J~){J

1r (Lu)/'vfdy.
• 0

k

l, .... p,

j , .... r; j

The best quadrature formula Q(u) is again determined by the monospline
Jl satisfying the adjoint boundary conditions U*(M) CC 0 and the ortho­
gonality requirement

rJiIS dx =~ 0
·'0

for all L *-splines S satisfying the same boundary conditions and with knots
of multiplicity fLk at tl,' It follows as for Theorem 4.2 that the class r(,' of
admissible quadrature formulas is nonempty if an L *L-monospline 5/ with
knots tl, of multiplicity fLJ. exists satisfying

U(1V)cc 0,

U*(UV) o.
Djl]\;(g,,) o. k = I, .... r;j ~= L .... tt",

(8.2)

The results in Sections 5, 6, and 7 can be extended to the multi knot case
by invoking the appropriate spline interpolation theorems in their multiknot
formulations. For example, Theorem 6.2 becomes

THEOREM 8. J. Let the boundary forms (6.1) satisfi' Postulate L Then there
is a unique monospline ]\[ satisf'ving (8.2) ifl (6.3) hold~ and. iln L::" 1 fLl ,
(6.4) also holds.

Likewise, the analog of Theorem 6.3 is

THEOREM 8.2. Consider the class 'f, oj' quadrature formulas (8.1) cxact on
L-polynomials and M'ith boundary forms (6.1) satislying Postulate I, (6.8), and
(6.9). Thcn rrr is nonempty ifj'(8.2) has a solution lI/. Moreol'er, LV is uniquelv
determined by (8.2) itl

J. I
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An important application of Theorem g..:: is to q~!adrature formulas of the
form

Q(lI) Y ~ i, ,f) ;1!(~I):

namely. if

then the best quadrature formula of this type is induced by the tl1onospline
Til LS'. where ;V is the unique solution to (8.2).

NOle added ill proof. The author has learned that A. Melkman also obtained Theorem
5.2 by an essentially different means based on Theorem 2.2 in [1]. This approach does not
yield the explicit relation between subdelerminants of D, and D., given here.
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