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1. INTRODUCTION

In this paper, best quadrature formulas in the sense of Sard with fixed
knots corresponding to splines satisfying mixed boundary canditions are
characterized. Work along these lines was initiated by Schoenberg in [7-9]
and subsequently refined and generalized by Karlin in [3]. Here the analysis
in [3] is extended to include quadrature formuias involving mixed boundary
forms. Additionally, not only polynomial splines but also splines induced
by a general differential operator of Polya type W are considered. This
generality is useful because it reveals clearly. for the first time. the full
role plaved by the adjoint differential operator in the correspondence between
quadrature formulas and monosplines. Also, certain hypotheses made in [3]
regarding sign consistency of matrices corresponding to the adjoint boundary
forms are seen to be unnecessary. being consequences of the sign consistency
already imposed on the original boundary forms (A result of this type is
suggested by certain Green’s function considerations.) This observation
considerably simplifies the task of verifying that the hypothesis of some basic
theorems in {3] are satisfied in concrete cases.

This paper is organized as follows. Section 2 contains the basic notation
and concepts to be used. Section 3 establishes the basic correspondence
between quadrature formulas exact on a specified class of polynomials and
monosplines. Section 4 characterizes the quadrature formula best in the
sense of Sard essentially in terms of an orthogonality condition (of little
practical utility), and also by means of a system of linear equations explicitly
available for computation. A simple example points out that Theorem 1.3 in
[3] must be rephrased. Section 5 presents some important quadrature
formulas involving mixed boundary forms. In particular, periodic and
antiperiodic boundary forms are treated. Section 5 also contains a basic
result (Theorem 5.2) concerning the sign consistency of boundary forms and
their adjoints (Professor S. Karlin told me that he also discovered this result
for the case of separated boundary conditions: his work 1s unpublished. but
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BEST QUADRATURE FORMULAS 349

he lectured on it at the Weizmann Institute in [973.) This result bears useful
consequences here, and in the study of boundary value problems of the
Sturm-Liouville type. Sections 6 and 7 deal with quadrature formulas
involving separated boundary forms. In particular, improved versions of
Theorems 3.2 and 4.1 in [3] are obtained Also, Theorem 6.3 extends and
refines a basic result, Theorem | in Schoenberg [8]. Section 8 contains
concluding remarks and extensions of this work, including a discussion of
multiknot guadrature formulas.

2. TERMINOLOGY AND PRELIMINARY RESULTS

A monospline of degree n with knots {£,}17.,,0 < & - - <2 €, </l isan
¢xpression of the form,

»

M(x) — ;:',' SN b LYy — )
" e

fe-1

where b, and d, are real. The class of such monosplines is denoted by .7, , .
[f the term x7/n!is discarded, the resulting function is a spfline of degree n - 1
with knots {£,}. The linear space of these splines is denoted by ., . If the
monosplines or splines are required to satisfy the boundary conditions. .# | the
resulting classes of functions will be denoted by .#, (#) and &, (F).
respectively. The knots {&.} remain fixed in what follows and so are not
mentioned explicitly in the notation.

More precisely the splines (monosplines) above are polynomial splines
(monosplines). They are piecewise solutions of the differential equation
Lu 0 where L - D(L - D"'1), respectively. More generally (¢f. Karlin
and Studden [5]), consider splines and monosplines defined by means ot the
differential operator,

L= L, DD, Dy,
where,
(Dju)x) = Dlu(x)/w;(x)], D - ddx,
and,

wix) - 0on0 =<l x 1,

w, e Cold joe 120,

Any solution to L - - 0 is called an L-polynomial or polvnomial for short.
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The class of these polynomials is denoted by . :#,. The difterentiul
equation Lu == 0 has a basis of solutions,

w(X) = (),

1(x) - y(x) J

Wt diy .
0

i
DT

wWolt, ) dr, o dry

Vi

u,(x) 1Y) ' wy(ty) ' ‘ wylty) o |

A1) il

which constitute an extended complete Tchebychell system. and satisfy the
initial conditions.

(D )0y w0y o, i o
where.

Di = DD, |- DD,. i b
and

DY D, 1
the identity operator. The function,

$.ix: &) 0. 0 X

e

f
R

v N 2
w(x) ’ wolty) ‘ Walty) - | wo(t, )dr, | dr .
0 & xoo

is the fundamental solution for Ly - 0 determined by zero initial data at zero.
and the characteristic jump discontinuity.
I)”'ld)u(é: ot é‘:) D lql)n(é: . g) \'1',](53.

which is equivalent to the requirement that the (# - 1)st (ordinary) derivative
of ¢,(x: §) exhibit a jump of l/py(€) at x == & where L = py(x) d"/dx"

An L-spline, or spline for short, with knots {£.},. ., is a function S« C *
[0. 1] which satisfies (LS)(x) - 0 except (possibly) when v = {&,1. Each such
S has an explicit representation as,

S(x) - Y ba(x) - Y didlag £,

1 o



BEST QUADRATURE FORMULAS

351

for certain constants {,} and {d,.}. An L-monospline, or monospline for short,

with knots {£,};_; is a function of the form.

M(x) = d(x) -1 Y ba(x) Y duba(xs; €.
pr=l h=1
where ,(x) is the unique solution to the initial value problem.

[‘n’v’,}‘ i 1:
Dif(0) = 0, i 0, 1,0 — 1.

N

Direct integration yields the explicit representation for i, .
” [1 f?r

(X)) = wy(x) ( (1) " wy(ts) - f

v ©0 Jo

The differential operator L has adjoint,

L¥ == [% = D¥ - D,*,

where
D* = (—1/w;) D. J==l..,n
Let
D= DD =

and by special convention
o ¢
D*" == D¥ D * =L

For later purposes it is useful to introduce the following notation:

D; == D(1|wy,10 ) Jj=n-+1..2n,
where,
Wy a(x) == 1, 0<<x<1.
Then,
L* = ((=1)*/w)) Dy, > Dy
and,

L*L - = ((—1)*/wy) Dy, - Dy .

~2 |-
Wity 1) f dt, - dr .
t0

(2.3)
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Thus L*Lu - 0 has a basis.

- W N
uxy = wly) l wolty) | wylfs) - ! wilt: pydr g o dty (2.4
0 R} h

B

where/ - }..... 2n. (Notice that 1, ,.... u, are as given in (2.1).) Also, Ly -0
has a basis constructed as in (2.1) with w, ..., w, replaced, respectively, by
Wy seees Wo,, . This basis is denoted by.

., u,”

and the fundamental solution for L* is denoted by.
&, Fx: E).
It is determined by zero initial data at zero and the characteristic jump
continuity,
D, E L E) DE,E 6 ).

Just as for L. polynomials, splines. and monosplines are induced by L* and
L*L. These L*-splines and L*-monosplines play a key role in determining
quadrature formulas exact for L-polynomials, as do the L*L-splines and
L*L-monosplines. In particular, an L*-monospline has the form,

M(X) == 3,5 () = Y b (X)) dida (X €y,
[ f=1
where s, = is the unique solution to,
Ln*l,[‘ = Is
D*4(0) = 0. o= Opnnn— 1,

and an L * L-monospline has the form

2n T
NI = () - 3 handy) - Y didadxt €,
RS JACN 1
where §,, and ¢,, are defined in terms of w; ... Wap, Just us i, and ¢, are

defined in terms of w, ..., w, .

In order to simplify notation the following conventions will be used. The
class of L-polynomials, L-splines, and L-monosplines will always be denoted.
respectively, by

P, Sy, and A

" n,ro.
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The class of all L*-polynomials, L *-splines, and L*-monosplines will be
denoted, respectively, by
P T

n o ° noroe S
The class of all L*L-polynomials, L*L-splines, and L*L-monosplines
will be denoted, respectively, by

A,

2wt

oy
2n 2 ‘/271./' -

If any of these classes are subject to boundary constraints, .#, notation such
as %, (F) will indicate this fact.
Consider mixed boundary forms,

Udu) = Y azD" w0) - > b, DI-Mu(l), i=l,...p
il

1

Let

be the vector of these boundary forms and
C:==1 4. B .

be the p 0 2n matrix determined by these forms. Assume rank C == p.

Let v e C*2[0, 1] with ¢™-D piecewise continuous with at worst jump
discontinuities at &;,..., &,. Then for we C" 10, 1] with u'® piecewise
continuous with at worst jump discontinuities integration by parts yields

a1 - “'1(§L-) u(f,,)

‘-1 (L) v dx — B(u, ) - Z, [D*" wlé) — D*" w(€, )]

Al
- ’ u(L5r) dx

0

where
NS (D)D) |
B(u, v) - EU T e

For z e C" tin a neighborhood 0 and 1 in [0, 1] define the 2n-vectors z and
z* by
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Define matrices B(x) and S

] - | N | -
X) o e By e By e s .
B(x) Py (x) Ous wox) ! W,(x) ‘51%\:”
where 6, == (0...., 0, 1, 0...., 0)7 is the usual ith coordinate basis vector. and
¢ -BOy 0

I 0 B(l) 2n2n ’
Then

B(u. vy = Sii - v*,
where - is the usual inner product in 2n-space.

Adjoin rows p - 1...., 21 to the matrix C == 4, B so that the resulting
matrix

Sln2n

has rank 2n2. Boundary forms complementary to U are defined by

Wl g p
( | i .
" UL 2 p

Forms U *(¢) and U*(v) are defined by

P{" U(X(I-)

Ty Rk ]
2n r—'/){“ U*ry (€57 $%e. (2.5

where the = on the matrices signifies the transpose conjugate operation. The
forms U*(v) are adjoint to the forms Ufu) because

B(u, ) — Si - * [ Ulu) ] . {U,.*(l‘) J

U (u) U*(r)
and consequently
L
( (Luyvdx = Ulu) - UXe) - Udu) - UX(e)
o (2.6)
s a1
Y [D* WE Y DT HE O wED I E) ’ (L) dx.

FA| Al

This equation will be called the basic integration by paris formula.
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Let A4 be an m < n matrix and p <X m, n. Then,
y ( 01 aeens i],)

stands for the determinant of the matrix obtained from 4 by deleting all rows
and columns except those labelled /, ..., i, and j ..., /, . respectively.

»ee

3. QUADRATURE FORMULAS EXACT ON L-POLYNOMIALS

The correspondence between monosplines and quadrature formulas exact
on (ordinary) polynomials of degree <n — | introduced in Schoenberg [§]
and extended and refined in Karlin [3] to embrace general separated boundary
forms will be extended to include general mixed boundary forms. Also, the
analysis here is presented for quadrature formulas exact on L-polynomials.
In this setting, it emerges clearly, for the first time, that quadrature formulas
exact on L-polynomials are in | : | correspondence with certain L*-mono-
splines. In the ordinary polynomial case L* = (—1)" L, the set of mono-
splines for L and L* agree or differ by a minus sign and the full role played
by adjoint differential operator is obscured. The analysis of this section
differs in several respects from that in [3, 7] because certain direct evaluations
possible in the ordinary polynomial case are not available.

Let

i

M(x) == 3,5 (x) = ) b M(x) - ) did, (v Ep),
i} Fe=:1
be an L*-monospline. Replacing v by M in (2.6) and utilizing L*M(x) |
for x ¢ {£,} it follows that

-1

wdy - U@ - UXM) — Ulu) - US(M)
" (3.1)

,

Y DFUMES) — DFUME N uEN ) [ (Lu) M d.

b1 Yo
If M also satisfies the adjoint boundary conditions,
Ux(M) - 0

then

»

1 » 1
wdy = Y a;Uu) 1Y cau(é)) | (Lu) M dx (3.2)
i1 V]

=0 [
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where
d UrAM), f== b,

DTUME ) DTTME )
“1(51)

)
Consequently the quadrature formula

Q) Y a;Ujguy = Y cuulé)),
[N} ]

;
SN

is exact on L-polynomials.
Conversely suppose

O(u) Z a; UAu) 24 o L)

(3.4)

is exact on L-polynomials. For v e C”[0. 1] the (generalized) Taylor formula

N .1
wx) =+ Z eulx) - ' Lu(t) é,(x: 1) dt,

6

Do) i i

¢ wiA0) 7

holds. (Consult [5. Chapter [1. Lemma 2.2] and its proot.) Hence if

a1
R(u) ' udx - Qu)

0

is the error functional for the quadrature formula, 1t follows that

a1
Ry | Lu(t) Rup 1) dr.

o

where the subscript indicates that R operatores with respect to the variable x,
and the interchange of order is easily justified. The next two femmas show

that
M(t) = R, (x:1)

is an L*-monospline. Observe that
~ 1

Ripxin) = | d(xinydy Q[ (x: 0]

0

LEmma 3.1, L*[ﬂ, ¢ (x: 1) dx) I hence. ](1, b, (x: 1y dx differs from the



BEST QUADRATURE FORMULAS 357

unigue solution Ji,* of L*y =1, D¥(0) =0,/ =0...n — L. by an L*

polyvnoniial.

Proot. A simple calculation yields
(didt) d,(x: 1) = - w, (1) n_y(x51).

where &, _,(x; 1) is the fundamental solution corresponding to D, , -=- D, .
Since L.* Dy¥ - D,* where D * == (- |j/w;) D, it follows that

-1 d

L[ ] 1 ,
D, JO a1 t) dy == ) dr f/ $xit) dy

1
‘ ¢nr—1(-\‘: ’) (/_\',
<
Repeated differentiation yields

a1 al
D, - D,* ‘ (o 1) dr = ’ 1wy () dy
Jo 4
and

o1
L] i tydy = 1.
Jo
The final assertion in the lemma is evident. |

Lemma 320 Qu[dax: 1)) is an L*-spline.

Proof. First,

Q:[¢n(\- f)] = Z ai,(//..r[qsn(-\.: t)] ‘ Z C/.',d)n(é:l.' : f)-
i=1

k=1

Consider a typical term in the first sum.

U o] = S bbb (xs 1) ‘ . (3.5)
i1 rel
for 0 - r - . A short calculation yields,
; ~1 Ny P
/]/([) ’ DJ. ]¢n(x: f) a1 H’j(l) ' “iivl(’)’) ‘ l Wn(,n 1)””71 L (/t,/"
g g O
Evidently.
/ oo

-1 A
DI/X/I/(’) - 11qi(l\’ ’ l‘.ill(ti) ‘ | Wy ]([n 2) (/[n L d’i-
Jr

o ot
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and so upon successive application of D , ..., Dy* it follows that
L*h) - 0

forj == l,..., n. Thus the first sum in Q,[¢,(x; 1)] is an L*-polynomial. (When
t == 0 the right side of (3.5) should be increased by 37, a,[a;,w,(0)] which L*
annihilates.)

Consider a typical term in the second sum in Q,[é,(x: 1)].

& 131 NP

¢N($7\' . t) - ”‘J(gl\‘,) }l .“'Z(rl) J' “‘3(’2) ’ ) 1"n(fn' ]) d’n 0 d’l 5

A

0. E-o 1.
Differentiating as in Lemma 3.1 yields
Dy - D * (€ 1) = wil€)), <&,
0, & <t
and L*@ (&5 1) = 0 forz =4 &, . Thus,
DX (& E) - DFUIGE 6T - .

and ¢,(&;; 1) exhibits the same jump in its (# - 1)st derivative as the fun-
damental solution ¢, *(t; £,). Consequently, ¢,*(¢; &) and ¢,(€,: ) differ by
an L*-polynomial. These observations prove the lemma. |}

Lemmas 3.1 and 3.2 establish that the remainder functional for the quu-
drature formula (3.4) can be expressed as

o1
R(u) - ’ (Lu) M dx {3.6)

My

for some monospline M € .4} .. On the other hand, from (3.1)

.l v 27 /‘~ v}
udv - Z a,Uu) - Z b.U, ) - Z € - ‘ (Luy M dy (3.7
Ja i il 1 vo

where «; . ¢, are given by (3.3) and

b, - —UXM), iopo bl 2n. (3.8)

/

Now (3.4), (3.6)—(3.8) yield

2n

(a’[ - ai/)(’/v[(”) ‘T Z hz'U{‘,/'(M) z’/ (C," - (';,')H(fy‘.) = O (39)
=1

[ERVIED

gl

i

for all we C[0, 1].
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The 21 boundary conditions U(u) == 0, Uju) == 0 are equivalent to the
stipulations

Di-y(x) =0, J=1l.,nx=0,1
For all u € C*[0, 1] satisfying these requirements, (3.9) reduces to
z (cp — ) ul&) =0
Lol

which manifestly implies

o = ko=l
Thus (3.9) reduces to
Z (_ai - az'() Uiu) Z bz'U(-,f(u) =0 (3.10)
i=1 i=p+l
for all u € C*[0, 1. In particular, for v = u,; with u; given in (2.4),
z Ufua; — a;') - Z Uefu) b; =0 (3.11)
(eS| Jj=p-1
for i == 1,..., 2n. This 2n# X 2n system has matrix
” Uiu;) Ue i(uy) ‘.
Vi=le,2n Q=12
V= lenp = pod,2nll

which is the transpose of the matrix

Cllly ey lgy )

t

where C and ii; are defined above (2.5) in Section 2, and i, is the ith column of
the indicated matrix. Since C is nonsingular the coefficient matrix of (3.11)
will be nonsingular provided

det ‘J ﬁl seres l—’?.n “ # 0.
Now
[ — SR “I VV(”I ERRRE] un)(o) W(un+] ERREE] l/lzn)(o)

TR oy

T Wy e, i, X)) Wy g s s (D)
where

I/V(Zl seees Zn)(xv) = ‘!(Di_lzj)(x)“i,jzl ,,,,, n -
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From (2.1) and (2.4)

Wiy ... w,)N0) - diag(w,(0),.... w,(0).
Wi, ... i, )0y 0.

Hence, the system (3.11) is nonsingular il
det Wiu, .4 ..... a1y =0

which is the case because the kernel @i, x) - wix), i 1. 2n and O -
x =< 1, is ETP,(x) (see [1. Chapter 6, Theorem 1.2]) and so

det Wi, ... a1y 0.
Consequently, (3.11) implies that

a;”  d;. I [ -

b, - 0. Pi=op =l 2n.

Thus, the quadrature formula (3.4) is induced by a monospline M ¢ .4
which satisfies the adjoint boundary conditions U*(M) 0.
If M, . M, e Z¥, both generate the same quadrature formula, then

n,.r

ol

| (Lu)My -~ My)dx = 0

U
for all u e C"[0, 1]. Since LC"[0, [] - C[0, 1], it follows that M, ~ M, . The
following theorem has been established.

THEOREM 3.1. Thereis a 1 : 1 correspondence between quadrarure formulas
of the form

it

Q) -= Y a,Uu) Y cué)) (3.12)
kel

i1
which are exact on L-polvnomials and L*-monosplines. M, satisfving the
adjoint boundary conditions, U*(M) 0. If Q(u) corresponds to M. then

a, — U (M) P p.

L DYUMES D ME )
ot T T T T T T T B T .

&)
Al
R(u) = ' (L) M dx.

0

k b, ’.
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4. BEST QUADRATURE FORMULAS

Let 4 be the class of quadrature formulas (3.12) which are exact on
L-polynomials. Let # [resp., #*] be the class of functions satisfying the
boundary conditions U(u) = 0 [resp., U*(u) = - 0].

A quadrature formula O € % is best in the sense of Sard for the class % if

sup | R =

Ml =1

nf sup | R(w)l, 4.1

1
L P

where

Luiio | LU d
i

~ 0

and R(u), R(u) are the respective error functionals for the quadrature for-
mulas Q, O.

The analysis leading up to Theorem 4.1 below is due to Karlin in [3].
(Theorem 4.1 below is essentially Theorem 1.2 in [3].) In view of the error

formula

Rw) ~ | (L) M dx,
Lt

the Schwarz inequality together with the condition for equality, and the fact
that L maps C*[0, 1] onto C[0, 1], (4.1) is equivalent to

Lo 2 J i Is 2 iy
[, ()2 dx = A, fo M) dy (4.2)

where M e . #% (#*) corresponds to Q. Thus the problem of finding a
quadrature formula best in the sense of Sard is equivalent to finding a
monospline in #) (#*) which best approximates zero in L,[0, []. Since
M ¥ (#*)is closed and convex, this problem has a unique solution M provided
MY (#%) is nonempty (equivalently, % is nonempty). Furthermore, since
M ¥ (F*) is the translate of the subspace F (#*)by M, (4.2) states that 0 is

the best approximation to M in &} (#*). Thus M is characterized by the
orthogonality requirement,

-1
[ MI(x) S(x)dx = 0. Se 5% (5%,
“{

The following theorem has been proved.
THEOREM 4.1. Assume 4 is not empty (see Theorem 4.2). Then the

640/20/4-4
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quadrature formula best in the sense of Sard corresponds to the unique mono-
spline M € .4} (B*) determined by the orthogonality condition

n,r

| 1 M(x) S(x)dx — 0,  SeS7% (5"
v

The orthogonality condition in Theorem 4.1 does not provide a practical
characterization of M because a basis for &F (#*) is not readily at hand in
most cases. The following result, Theorem 4.2, provides a useful practical
determination of M in terms of an explicitly available system of linear
equations. Theorem 4.2 is the extension of Theorem 3.1 in [3] to the case of
mixed boundary forms.

For v == S e ¥ (#*) the basic integration by parts formula (2.6) yields

|"J (Lu) S dx = Uu) - UXS) + 2 b S(g’ﬂ"),f' D S ) u(éy)  (4.3)
o Py’ wi(€r)

because L*S(x) =- 0 for x ¢ {£,}.

THEOREM 4.2.  The class 6 of admissible quadrature formulas is nonempty
if there exists a monospline N € M,, . (see Section 2 for the notation) such that,

UN) =0,
U*(LN) =0, (4.4)
N(,) =0, k==1,.,r
in which case

M = LN

determines the quadrature formula best in the sense of Sard.

Proof. If N satisfies (4.4), then M == LN € .4} (#*). (Indeed it is easy to
confirm that L.#,, , € /). Hence the class % is nonempty. From (4.3) with
w:o=N

Al
| MSdx =0, Se% (5% (4.5)

0
and M determines the best quadrature formula. |
Let N == i, .S where S € %, .. Then (4.4) is equivalent to
US) = ~Ulh).
UX(LS) = —U*(Lif,). (4.6)
S(gl) - ‘—1/1271(5/.')7 /{ == ]""’ r.
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Theorem 1.3 in [3] states that % is nonempty iff the determinant of the
system (4.6) is nonzero. This result must be rephrased in view of the following
example: in fact, the reasoning used in Theorem 1.3 in [3] is essentially that
used to prove Theorem 4.3 below. Consider quadrature formulas of the form

Q. (u) == cu(}).

Among these quadrature formulas precisely one, Q. (), is exact on poly-
nomials of degree <in — | where n = 2. (Here the ordinary polynomial case
is treated with L = d?/dx2.) Of course, Qy(u) is just the familiar midpoint
rule. In this case conditions (4.4) on N € .#, , are,

U - 0.
N3 =0,

where U*(u) = 0 is: u(0) = u'(0) = u(]) = (1) = 0. A short computation
yields
1 -3

2 1 ;
g + Blx - 1/2) — 3 (x — 1/2)}

X

Nx) =

=

with B an arbitrary constant. Consequently, (4.6) must have a zero deter-
minant. Finally,

M(x) = N"(x) = (2221) — (x — 1),

and it is easily checked that M determines Q,(u) as it must.
In view of this example it is useful to determine when (4.4), equivalently
(4.6), determines N uniquely.

THEOREM 4.3. The requirements (4.4), equivalently (4.6), determine N
uniquely iff the only polynomial in 2 ,(#) interpolating zero data on {£,},_, is
the zero polynomial. Thus, N is unique when r = n.

Proof. Suppose (4.4) uniquely determines N € .#%,, .. If P ¢ 2 (%) inter-
polates zero data on {¢;}. then N; = N - P satisfies (4.4). Hence N = N,
and P - : 0,

Conversely assume zero is the only polynomial in &,(%) interpolating zero
data on {&,}. Let S; € %, , be a solution to the homogeneous system

U(Sy) =0,
UH(LSy) = 0,
Soé) =0, & I..... F,
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corresponding to (4.6) and let S; = LS, . Clearly. S, € 9 (#*). From (4.3)
1
[ S0 Syde 0. Se s (4%,
Y0

Thus Sy -0, te., LS, = 0 and so S, < -7,(#4) interpolates zero data on {£,].
Hence, S, - 0 and (4.6) has a unique solution. |1

Remark 4.1. Conditions (4.4) in Theorem 4.2 are sufficient to ensure that
the class of admissible quadrature formulas. %, is nonempty: however, it is
not known whether these conditions are necessary as well. The following
conditions, rather close to (4.4). are both necessary and sutficient for “ to be
nonempty,

U(N)y 0.
UH(LN) 0. 4.7)
rooppykt 1 _ ) w b \
§D7SED DTSE qo o s e
- ”-1(5,;) "o

If all these conditions are satisfied M - LN corresponds to the best quadra-
ture formula as is seen by the argument of Theorem 4.2. On the other hand.
if ¢ is nonempty and M € ./} (#*) determines the best quadrature formula,
then the boundary value problem,

LN M,
UNY 0.

is solvable because the orthogonality property (4.5) guarantees that M is
orthogonal to all solutions of the homogeneous adjoint boundary value
problem
L*r
U*(x)

It is easy to check that N e.#4,, , and also U*(LN) U~(M) 0. Finally
from (4.3), (4.5)
[D*"'S(E ) DS )]

.1 .
0 - | MSdx- Y - ) DTGy,
"” S /.Zl iy §1) (£4)

for Se &% (#*), and conditions (4.7) hold.

In the next section, conditions (4.4) arc shown to uniquely determine N
for some important classes of quadrature formulas involving mixed boundary
forms.
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5. SOME IMPORTANT QUADRATURE FORMULAS WITH
MixeD BOUNDARY FORMS

The determination of A corresponding to the best quadrature formula
from (4.4) involves solving the (2n -+ r) < (2n -i- r) system (4.6). In expanded
form this system is

Y a DFIS0) -1 Y by DS = e i1, p,
i

i=1
Zl a¥D* 'LS(0) + Z bXD*"'LS(1) == 1, i=p-i 20, (5.0)
SE) 0, k= T
where S(X) = Z?rnl a,,-,u,-(x) - Z; 1 d/rqs‘.:n(X; g/) & ’91’)271,7' and

[ (ei) T Ll(‘/’:}n)y
S () = —U*(Lihyy).

Here

Ay =1 az) ‘ B* - b,*/l
are the matrices such that || 4, , B, |, is the matrix of the adjoint boundary
forms U*(u) constructed in (2.5). From Section 2,

7 1)t
DXt = l‘. ) “Dyii1 o Dyga

Wage. i

and the boundary conditions in (5.1) can be expressed in the more convenient
form

Y a;DS0) Y by DITIS() = e,

i1 i 1

7]( ) " b7 (
Dri-1s(0) ¥ 28
-1 w n+‘>‘1(0) ( ) Z

i,r)D1l i— IS(]) :/

Vig2- !(

To guarantee the existence of a spline S € .9, . satisfying (5.1) appeal is
made to the basic interpolation theorem of Meikman [6], see also Karlin and
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Pinkus [4]. which is stated as Theorem 5.1 below for casy reference. A set of
boundary forms

Y e D0y -y fDV (), ik

i-:3 i1

is said to satisfy Postulate J if

(Y Fand Fare kb = mwith & - min(2m, m - r).

(i) the k& < 2m matrix D =% d;; |, where
dy e =iy i ... kijood., .
a1 i ... Aojoe=pr -1 2m

has rank A and is sign consistent of order k (SC,). i.e., all nonzero subdeter-
minants of D have the same sign.

THEOREM 5.1, Ler the /\nors (g,,, 1L 0wl £ L, be fixed.

Given points of interpolation, 0 <2 x| < =+ <7 x,. ., - L. associated real data

{erF vk boundary ((mdlrlons.

}; DSOS b,DUS() e i ek
i J1

which satisfy Postulate ), and interpolation conditions
Stx)) vy [ l..... noior k.

there exists a unique spline S(x) of degree n -- | with knots {.f,},'; _y satisfying

these boundary and interpolation conditions iff for some s, O k fhere
exists a collection of indices iy < - << i, (1:i, 0 n). and g1
Jios ot 1D, 0 2n) for which
... Lk
L e
Y TN S PRI S

while the sets {x,}. 1,1 {0}, { gl satisfy

(1) ifk =5 -i-r, then

B e /R TR I JT2EE PR kv oes

yr—x

where {i,'}17" is complementary to {i,\{ in {1...., n};
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(1) ifk <<s-r, then
xu—s < gv < Xﬂ—s‘%u

(i) and (ii) the conditions are to apply when the subscripts are meaningful

In the application of Theorem 5.1 to the case at hand, the matrix of the
boundary forms (5.2) has the special form

“ A))?fn 0 BJ}"n 0 “
H 0 A?T:n-ﬁf)ffn 0 B(ﬁj‘.r:nﬂ')/v\n
Use of Laplace’s expansion and some elementary simplifications show that
boundary conditions (5.2) satisfy Postulate J iff the matrices E == || ¢;; |, and
F =1 f,; | are SC, and SC,,, _,, of full rank, respectively, where

(ST 1)(*1)1 " p [ = la"': p’] == 15""”

(5.3)
= Dy onii_i» i= l.,pij=n-1..2n,
and
Ji = af_;(“-l)"‘”. {=p-=1.,2m7=1,..,n
= by 1) i=p+1,.,2nj=n+1,.2n -4

(For convenience the rows of F are labeled p —+ 1,..., 2n.) In fact, if D is the

matrix constructed as in Postulate J for boundary conditions (5.2), then the
only possibly nonzero subdeterminants of D are

Xy aiens 5\1,61 yrensy B”.'}/l,..., ')/7_4,81 ..... S,W

L, .
= efF (gxl seeny Xy 81 i 2”,..., 8](4 — 2’7)
p i L o |
b F(ﬁ] 1.0, ,B,, — Y = My Ve 17) (5.5)

where

o << By << << By L2 <<y << <<y
In <& < o < 8, << 4n,

tw=p,u-4dv=220—p,

and e is a nonzero numerical factor whose sign is independent of the column

indices. (The factor ¢ involves products of 1/w;(x) for x = 0 and 1, apart
from a factor +1.)



368 JOHN W. LEE

The next theorem, of general importance for boundary value problems,
reveals that sign consistency assumptions on a set of boundary conditions
implies analogous sign consistency for the adjoint boundary conditions. It
will be used to show that F'is automatically SC,,, ., with full rank whenever £
is SC,, with full rank. This fact is of evident practical importance for deter-
mining when boundary conditions (5.2) satisfy Postulate J.

THEOREM 5.2.  Assume that the boundary forms

Udu) = Y ayDi='u(0) = 3 b;;Dlu(l), Pl p
i=1 J=
are such that the matrix Dy = | di}’ | is SC, of full rank where
d,-(,” a1y, i b, p.j— Lo .
= bonit j» i lapyj=n +1..2n0

Then the adjoint boundary forms

n

Ufr) = a?D*"'ll*(O) -+ Z bl.*j.D*Hl'(l), [=p 1., 2n

J

i=1 J=1
constructed in (2.5) determine a matrix D = | df,}i" i which is SCyp_,, of full
rank where
W qyrip ; | 2n =1
dy’ = a;(—Drr, Poepe L 2nf = b, n,

= b g = D2 e p e L 205 = o L, 20
Proof. Let ¥ = (C-1)* §* denote the matrix in (2.5). Then,

al = vy . i--p o 2nj=1,...n
and

T & U7 1 I
Let 1 <j, < - <<jo<<n <koq < <kyyp < 2n Then,

=1, . 2n s n) - D gy gt By )
A=, (07 Tyt e
]1 »"'x/s’ 841 aerrs N2n—p

) p-+ 1. L2
* V(/l,...,_,;.,sn Sl kg3 kg )
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By the Cauchy-Binet formula

P -+ 1. 52’7
g /1 7---3,/’5‘ 5 3n ‘fb‘ I — /\’x+1 seeny 3n -+ I — k?_nfrn)

- T

Lgoy e s s <lag, <20

(C-1y* (p SR 211)

g geeny Koy p

JiaeesJss 341 — kq .y, 3n -4 1

— (C-1)* (’P +1,...

< S*( 1o

369

N L¥2”71,)
- k?n——n

. 211)
Al —Jog =1 —ji ko kanoyp

o (=D
) =1 Wy 1,1,]'[(0) 1:1:_:‘[1 wk,——n(])

2n—p l

( —1 )s(sw-l),"Zq

because of the special form of $*. Thus,
A — (‘I)S(H-v)«l-(zn—p)t.~‘(-'71),’2—~(k,\41<-"-A'g,,,,p)

5 l
[l—}[ wnkl——jz(o) /:2131 “"A’L—;IT‘)

2p-p l

X

o Ot (n = et T — ket ey kg,l,l,)

p -1, »2n
But (see [1, p. 3]),
-1 (’Iz Al = e m =1k e, kE"ﬂﬂ)
g P , 21
— (— 1)(211—1))(2n Fp 1) 24 () sm G g ) 2 (g gt e ooy
y C(l 5 | y 7} [det €
L B S R e O L AT A ’
where
N <

< Jn—s = n is complementary to {j,j; in {1,..., n},

n-b =l k' e <Ky < 20 is complementary to {k,}2177 in

{n -1~ 1,..., 2n}.
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So

A (— 1 )H(/’%/') L CTE TR T R N S FE RN C RN )RR IR RPN

20 ] ]
T
SRR

Vi, H/ ,n(]) del(

2 T ¥4
< C y g R P
(,,,: |y AR IRE T By PR R

Pt -n’

Next a short calculation shows that

1. P
C ’ - . ’ ’ ’
(I‘l * 1 ""\]7,;7—&‘“") H 7 I 'Jl/’ /{l""Vl{Ilf.Cv*I(‘

. (*l)(n%\)(r' WGy i s o D () /2

2
vmp+1—nmmn71¢;

Thus
A . ( 7])(Zu\m(Z/z’17{-‘“,21—(/1)(”»!) 2

. (7]).\'(1' Spyis(s /2 e s e ow e D) s e s ey 2

M T e

=1 Vit ”(0) ‘/\‘, n(l) det C
I.... P
meHAAﬁxwmrlvﬁ »
\ 3n -1 =K a3 T e kY

The second factor on the right simplifies to

( ,_l)u(r—rl):'(7)7711—-1)(1)771)/'2

Combining this with the first factor in the preceding equation for 4 and
simplifying yields

(— 1 )N(r— )
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Thus
[7 1. 3 2”
! ( JiooeenSsn /\'_\..1 ~~~~~ ‘]\,271 - I))
M 1 2n-n | {
{—1)ntrem T <
) ]Hl W1 15,(0) ,J—I, wy, (1) det €
I,... -’
D, (,, o el (NG I I A )
\ 31—k e 300 T — kg

which proves the theorem. |

Remark 5.1. The proof actually shows that D, is SC, of full rank iff
D.. isSCy, , of full rank.
Theorem 5.2 vields

THEOREM 5.3.  Boundary conditions (5.2) satisfy Postulate J iff the matrix
E in (5.3) is SC,, of full rank.

Proof.  The definitions of £, F. Dy . and D . yield

- P
E(, Y TN T RO PRI R CON MR 3I<]/)

neson

l,... P
(o p (’7 = jn a1 — )
3n ’+ 1 - A;) Ko oaeees 3n 41— /\,1/’
and
Pl ,2n p-1 .21
F{’ : Y l)s(vz 1200 . . .
(./1 »-~-«],<-,~l\’,\‘——17-“! kznﬂl) ( *1 (]] ,..,.‘]v\..]\',\rn,....kzn—,«)

The last equation in the proof of Theorem 5.2 can now be expressed as

po-t . 2n
Fi'. ;
(./] :'--,‘]89 ]"x 1 scees ]\’A_,,””p)
(,7 1)7’l(r+n) & ] an-p 1
o det € i (0) 20y v, (D
l,... P
K (’7 41— Jraan T \)
‘ 3= — K. 3n bl ok
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Thus Eis SC,, of full rank iff Fis SC,,,. , of full rank. The theorem follows
from the remarks preceding (5.3). |

Application of this theorem in conjunction with Theorem 5.1 yields

THEOREM 5.4. Let E and F be given by (5.3) and (5.4). Assume Fis SC, of
full rank . Then there exists a unique monospline N € #,, , satisfying

UN) -0,
U*(LN) = 0, (5.6)
N() - 0. kool

iff there exist indices {a,,}, {B}, {ye)» {84} such that

... o
E (,(\'1 ..... X, 81 s 2/1...., 8“_ ; 2”) r: O

p - L L2y
F(B] — e By iy - ey ”) = 0,

where t - w = p,u—+ v = 2n — p, and the indices

| sl <0 < s <L By < < By,
SL2R <y < <y, e 3 < 0y < < 0, =l dn
must in addition satisfy: Let {iy ..., [} = {n; ,.... oy By B sos - 1w
and{jl ***** ./‘27% ~‘: = {YI arers %- . 8] EARA] 871')!-

Case 1. Assumer == 0, i.e., no knots occur. Then the indices must satisfyv

’

4n =1 — jopqw = 1 po= o 2n s

Case 2. Assumer = 1. Then the indices must be such that s = 0 and

(Y if 2n =5 2rdn 1 —jopiq s w o, p= Lo, 20— r -y,
while

(i) if2n <<s —r, thens << 2n.

Here {i,}3" * is the complementary set of indices to {i}}} in{1..... 2n}, and the
above conditions are to apply only when the subscripts are meaningful.

Proof. With the sets {«,}, {Bs}, {¥.}» {64}, {i;}, and {j;} defined as above,
(5.5) shows that

D (‘l,... L 2n

/
VXL geeey Oy B] sesey B“ N ’)’] seeey Yoo (;] sveey 8“-
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iff both determinants listed in the theorem are nonzero. By Theorem 5.1
there exists a unique monospline N satisfying (5.6) iff these determinants are
nonzero for indices {i;} and {,} satisfying the stated conditions. (Note that
the knots and points of interpolation agree in this case.) |J

Remark 5.2. 1f p = 0 (resp., p == 2n) the condition on E (resp., F) is to
be dropped.

Remark 5.3. The adjoint boundary forms and hence £ must be known if
N is to be computed explicitly; however, the conditions in the theorem
guaranteeing the existence of N can be stated without explicit reference to
the adjoint boundary forms. Indeed, by the last equation in the proof of
Theorem 5.3, the condition on F is equivalent to

g Py
I )20
(2/1 e B 20 L= B A - L=y A L — 7’1) '

where {8}y " is complementary to {B,}¥ in{n = l.....2n}, and {y;'}y""

complementary to {y,}} in {20 + I...., 3n}.

18

Remark 5.4. Itis interesting to consider the example in Section 4 involving
the midpoint rule in the context of Theorem 5.4. In this case p = 0 and F is
SC, of full rank. Since r == 1, Case 2 of the theorem is relevant. It is easily
checked that Case 2(i) applies and that the index requirement is not satisfied.

EXAMPLES. (a) Periodic boundary forms. Because of their frequent oc-
currence in applications, periodic boundary forms are among the most
important mixed boundary forms. In this case the matrix D itself is readily
available

(—1yn 1
(,,V ])1‘42 |

S

assuming that all the functions w;(x) are periodic with period | because then
the boundary forms are self-adjoint. [t is easily verified that D is SC,,, iff r is
odd in which case

2ndn

D ( I... s 2}7) _ TR LN =41 1 = Jonet st
g ceeen L 1 aees oo s 10 otherwise,
where /1., 2 — s, {i, V3 % is complementary to {,}j in {I,..., 2n}. and
Do dy < 0 <y 50 2n <y << < Jsn « < 4n. Since r is odd, Case 2 of

the theorem is relevant. If 1 < r < 2n, choose s = 2n — r. Then s = 0 and
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s --r = 2n 1f r = 2n (hence, r >> 2n) choose s -- 1. In either case all the
stipulations of Case 2 are met and N is uniquely determined.

If the wy(x) are not periodic, calculation of the adjoint boundary forms
shows that the matrix D has positive factors multiplying the columns# — 1....,
3n above, and so the previous analysis can be carried out with inessential
changes. Alternatively, the adjoint boundary forms need not be calculated
at all in view of Remark 5.3. For periodic boundary forms the matrix E is

‘}( l)l'*n 1 1
Ii (,,, l‘)rvn‘-fl |
“‘ . .

‘.i ( l)’ 1 Iy lon

and F is SC,, iff r is odd in which case

F(l,... oy - DR S A b,
T\ e 0y, 8 20,0, By - 211) 0 otherwise,
for / — 1...., w. Likewise,

B n

£ (217 Pl =B w2 b =B L=y, dn -+ 1 - j/l')

O R A L R

(0. otherwise,

for [ == 1,...,v. Thus to obtain nonzero values for the appropriate £ sub-
determinants

x) =4 A1 e Sy g s =1 w,

Bl =dn bl =y, I e

Iy v B = {0 s % Proees, Bt ANA {Jy vy dom s} == {71 cvs Vi o 01 wvsy O
the previous stipulations are

il/ = 4” ]‘ 1 - ‘]..2"_5,;,1 N / z 1,..., 2” - 5.

Now it follows exactly as before that N is uniquely determined.

(b) Antiperiodic boundary forms. These forms can be treated in the same
manner as periodic forms. In this case, r must be even for D to be SC,, .
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6. SEPARATED BOUNDARY FORMS

Theorem 5.2 allows us to refine some of the results in [3] where the bound-
ary forms are separated. In this case Postulate J is equivalent (see [4]) to
Postulate 1 stated below.

Assume separated boundary forms,

Uiu) = Z a;;: DI 11(0), i= 1., p,
i

6.1)
L[l"rp(u) = Z bl'ijﬁlu(]L [ = ]’--'7 q,

=1
and let

A=la;l. B=]byl.
These boundary forms are assumed to satisfy

Postulate 1.
i) p+q<2n
(iiy A4 = a,(—1)1 is SC, with rank p:
(iii) B is SC, with rank g¢.
Notice that the rank conditions imply p <C n and ¢ < n.
THEOREM 6.1. Let the boundary forms (6.1) satisfy Postulate 1. Then
adjoint boundary forms can be constructed in (2.5) to have the form

UXu) = Z az.*jD*j—]u(O), i=1l,.,n—p,

J=1

Uz, w) = Z] bED* (1), i=l..,n—aq,
j=

and satisfy

A, =l a | is SC,_, with rank n — p.

B = |Ib}(—1)/1| is SC,_, with rank 1 — g,
where B,. = || b} |

Proof. Using notation similar to that in Section 2, if

A O

C= | j
1o B, gy o



376 JOHN W. LEE

then there are matrices A and B of order (n — p) % n and (n — q) < on.
respectively, such that

S o

20 2n

1s nonsingular because 4 and B have full rank. There is a permutation matrix
P such that

A, 0
P( ) !! 0 Bl :211 29
where
A B
AU, Bl
and A, and B, are nonsingular. Thus,
. A0
C-1p*x b 1 .
P o B
s A4,h" 0
1y k |
With S defined as in Section 2, it follows that
- iA, 0
)k Qo bt
P(( ) S ! 0 BQ !271 Hon

for certain # < n matrices A, and B, . Consequently, the matrix ((-1)*S*
used to construct the adjoint boundary forms yields separated boundary
forms of the type stated in the theorem.

In the context of Theorem 5.2 for separated boundary conditions D,
i di || where.

({].(}’ e S LA i l...., P 1., n,
= D ponsijs i==p 1., pooqyj-=an -1, 2n,
0, otherwise

An elementary linear dependence argument (see [4]) reveals that the only
possible nonzero subdeterminants of D, have the form

D ( e ) (6.2)
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for 1 = j; < <j, =“nand I < ky; < - < k, < n. The determinant (6.2)
is easily seen to be equal to

plremsta-Dare = { oo l,... s )
(et (\j1 ..... ]j ,,) B( Lol - Ky, n—4 1 — /\(f)

,,,,,

Hence D; is SC,_, of full rank iff the boundary forms (6.1) satisfy Postulate I.
Entirely similar reasoning confirms that, for the case at hand, the matrix D,
in Theorem 5.2 is SCy,_(,.o of full rank iff the matrices 4., and B, defined
in the theorem are, respectively, SC,_, and SC,_, of full rank. Now
Theorem 5.2 implies the desired result. |

Theorem 6.1 implies the following strengthened version of Theorem 3.2
in [3].

THEOREM 6.2.  Let the boundary forms (6.1) satisfv Postulate |. Then there
is a unique monospline N € My, , satisfying

U(N) == 0,
U*(LN) = 0,
Ny =0, k= 1,..r

iff there are indices 1 s @ < <i, <\n <l,y < < i, = 2n 1=

J1< o <L < <t < Jn, K20 such that
1...., , I,... o
APy o0 (! "M,
01 senny by oy = My iy — 11
| (6.3)
yeern ) 1 = q
B{. = 0, B 0,
(A/1 ..... /,,) N — e /7) i
and if n = r,
.jAL T IL:‘/ Ll ,u/ = [s----» no-—r (6.4)

where {i,'}] is complementary to {i,}y in {1,..., 2n}. Consequently, if r == n. N is
always uniquely determined (cf. Theorem 4.3).

Proof. The matrix of the boundary conditions which N must satisfy at
x == 0is (cf. (5.2)),

|
I a;; =1, i O/» n
4 | J=1..... n
1 Jel kg !
O(n—p) n ( - [ ) ai_i,/ Whoa (0) =l no; n

640,/20'4-5



378 JOHN W. LEE

The matrix 4, constructed as in Postulate [ is

i =1 ag; 0
i 0 WD tadin, L A0

Evidently, 4, is SC, with rank » iff .4 is SC, with rank p and A, is SC,, ,
with rank n — p. The matrix of the boundary conditions at x — 1is

R 2N PR O

By = | Jolen n M
5 0<nvq)>j” I b:()( . l)j l/l“,z ;’.-)(I)W 1,000, no-q ‘

which is SC,, with rank # iff B is SC, with rank ¢ and B, is SC,_, with rank
n — q. By assumption 4 and B are, respectively, SC, , and SC,_, of full
rank. Thus. the matrices A, and B, satisfy Postulate | with n replaced by 2n, p
replaced by s, and ¢ replaced by n. The theorem now follows by invoking the
basic interpolation result, Theorem 2 in [2], for the case at hand. ||

Remark 6.1. The index restriction (6.4) was inadvertently omitted in
Theorem 3.2 in [3].

Remark 6.2. Just as for mixed boundary forms (see Remark 5.3) it is
possible to express conditions (6.3) in Theorem 6.2 without explicit reference
to the adjoint boundary forms. Specifically, the inequalities involving 4 , and
B, are equivalent to

I.... A -
A (.211 Bl i 2 - 1 ,,v]» - 0, (6.3)
(... 7
; 6.
B‘\211 O R NUOUPRRY B B 1 0,1) 0. (6.6)

n

where {;/}{ and {j,'}} are complementary, tespectively, to {/;}7 and {j;}{ in
{1...., 2n}.

The following result generalizes Theorem [ in [8]. It applies in particular
to boundary forms encountered in the study of vibrating physical systems.

TUEOREM 6.3.  Consider quadrature formulas of the form.

Q) = Z a;Udu) - Z () (6.7)

i1 [N

with boundary forms (6.1) satisfying Postulate 1 and the requirements

2 U )
af;r) <o (6.8)
B0 o
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Let € be the class of quadrature formulas (6.7) which are exact on L-polyno-
mials. Then € is nonempty iff there exists a monospline N € M,, , satisfving

U(N) =0,
U*(LN) =0, (6.10)

Ny =0, k= 1l.,r

Furthermore, N is uniquely determined by these requirements iff

ren—{p-q).

Proof. Let
(i = Ly pon = L 20— pl.
Uy =1{l,..,q,n -~ 1,..,2n — gl (6.11)
Then
(i =1{p+lo,n2n—p+ 1., 20,
(i =g = 1,..m2n—q- 1. 21, (6.12)
Consequently,
) A A
and
8BS Bl B0 0

In view of Remark 6.2, the requirements (6.3) of Theorem 6.2 hoid for the
indices (6.11). Furthermore, in the event n > r, there will exist indices
satisfying (6.3) and (6.4) iff the indices (6.11) satisfy (6.4) because the selection
(6.11) determines the smallest possible j”s and largest possible i”’s. Conse-
quently, there exists a unique monospline N satisfying (6.10) iff either
r == nor, if r < n, the indices (6.11) satisfy (6.4).

From (6.11) and (6.12),

Ju = p= 1l g,

=ntp—gq p=q+Loon

and

i) =p - =1,..n—p,
= W po=n—p-+1.. 0
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Thus, (6.4) fails to hold iff there is an index u such that

G <o

and either

N A I TR ifpu +rscnm-p
or

Howegeg o F il ~-r 0 -—p.

The last requirement can never be satistied, the two before it are equivalent
to the existence of w satisfying ¢ < p ~.n r - piietog<<n--r p.
Consequently, N is uniquely determined iff ¥ - n — (p - ¢), which proves
the last assertion in the theorem.

The analysis above establishes that the existence and uniqueness of an .\
satisfying (6.10) occurs iff r == n -~ ( p -+ ¢). By Theorem 4.3, % is nonempty
if an N exists satisfying (6.10). Thus, it remains to show that N exists satis-
fying (6.10) when % is nonempty and »n - (p 4 ¢) > r = 0. Construct
N, e .4,, , satisfying U(N,) - 0 and U*(LN,) =0 as in Remark 4.1. Fix
points 0 - x; <7 -+ <7 x, < | and data y, ,.... Jywhere A = n—(p - gq). By
the basic interpolation result, Theorem 2 in [2], there exists a unique /-
polynomial, P, such that U(P) = 0 and P(x,) = y,, = 1,..., A (Indeed, the
hypotheses of that theorem are met using the indices {i,}; = {/}1 and { j;}4
{19, By further specifying x;, -~ & andy, - - Ny(&) for /- 1. r (recall
r < A} it follows that N -~ N, - P satisfies (6.10). |

Remark 6.3. Schoenberg’s result, Theorem | in [8], is the uniqueness
assertion of Theorem 6.3 when p - - ¢ and the boundary forms are specified by
the matrices

A "[))-,071 nj- B ])JaOn—D
where 7, is the p x p identity matrix. The uniqueness result is quite useful in
the actual calculation of N: see [8].
7. BOUNDARY FORMS FOR VIBRATING SYSTEMS

The results of Section 6 will be used to determine best quadrature formulas
based on the specific boundary forms,

U/.(”) Di 111(0) b ,,”u . l(,.)_DufZ.u(O)‘ =1 p.
Uy du) == DE (1) - (- D)8 d D u( 1), i 1, g,
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where 0 7 p, g <. n 0 < ¢;,d;. These boundary forms arise in physical
oscitlation problems (see [I, Chap. 10, Section 7]) and were treated in [3]. The
results below sharpen Theorem 4.1 in [3]. The assumptions required on the
c'sand d’s in (7.1) and the attendent analysis are somewhat different according
as 17 is even or odd. Suppose # is even. the case of primary physical interest.
(Comments on the situation when s is odd are given at the end of this section).

It was shown in [3] that the matrices 4 and B of the boundary forms
corresponding to x - O and x  1in (7.1) are, respectively, SC, and SC, of
full rank. (This was done by direct evaluation of the determinants in question.)
Thus. the boundary forms (7.1) satisfy Postulate I and, additionally. it is
easily verified that

| P

A (\] ..... p)
I...., ¢\

B(l ..... q) ~ 0

because of the special form of 4 and B. Appeal to Theorem 6.3 yields the
following refined version of Theorem 4.1 in [3].

THEOREM 7.1.  Consider the class € of quadrature formulas (6.7) exact on
L-polvinomials, with boundary forms (7.1). The class € is nonempty iff (6.10)
has a solution N. Furthermore, N is uniquely determined by (6.10) iff'r = n —
(p +q).

Remark 7.). N may exist. equivalently 4 may be nonempty, when
< — {p --¢q). The example of Section 4 using the midpoint rule is a case
in point. There n =2, r- 1, and p = g = 0.

Remark 7.2. The preceding discussion as well as that in [3, Section 4] is
casily modified to cover the case when » is odd. However, it must be assumed
that. for [ == [n/2] <4 1.

(=D = (-Dre 20,
and when p > /. that.

Cr jCryy 4 l, ] = ],...,/7 — 1.

These assumptions and corresponding ones on the d’s are needed to insure
that the boundary forms (7.1) have full rank.

Remark 7.3. An alternative proof that the matrices 4 and B are SC,, and
SC, of full rank can be based on Theorem 2.2 in [1].

6.40/20/4-6
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8. EXTENSIONS AND REMARKS

8.1. Best Lo-Approximations

The preceding results characterizing best quadrature formulas can also
be viewed as characterizing the best monospline approximation to zero in
L,[0, 1] among all monosplines satisfying specified boundary conditions and
having prescribed knots.

8.2. Weight Functions
The previous results and their proofs extend immediately to quadrature
formulas approximating
o1

I (X)) wix) dy

0

where w(x) is a positive, continuous weight function. The only change
necessary 1s to redefine i, in the definition of monospline to be the unique
solution to the initial value problem

Lu w
Di=14(0Q) = 0. Jooo .,

A definite integral representation of ¢, is available by integration.

8.3. Multiknot Quadrature Formulas

The analysis of the preceding sections extends to inciude the important
case of multiknot quadrature formulas
" 1 iy
Q) tz a;Uu) - Z Z ¢ D’ u(&,) (8.1)

71 S 1 j=1

which are exact on L-polynomials. Here
Iy s on, k bk

specifies the multiplicity of the knot &, . The analog of Theorem 3.1 estab-
lishes a | : | correspondence between quadrature formulas of the form (8.1)
exact on L-polynomials and L*-monosplines of the form

n [y )
M) = o, () o Y bauM(x) Y Y i Ax €
[

Lot =1

satisfying the adjoint boundary conditions, U*(M) - 0. Here ¢, , is the
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fundamental solution for D;* --- D,* constructed as in Section 2. If Q(u) in
{8.1) corresponds to M. then

a - UM, P e,

_ D¥ M(E ) - DT UMUE, ) o o
€1 ; S ""‘*f“f;(gﬁ T e k fo... rejoeE ... e
1
Rat) [ (Luy M dx.

~0

The best quadrature formula Q(u) is again determined by the monospline
M satisfying the adjoint boundary conditions U*(M) == 0 and the ortho-
gonality requirement

[. 1 MSdx =0

Al

for all L*-splines S satisfying the same boundary conditions and with knots
of multiplicity w, at &, . It follows as for Theorem 4.2 that the class 4 of
admissible quadrature formulas is nonempty if an L*L-monospline N with
knots &, of multiplicity u, exists satisfying

UN) =0,
UX(LN) - 0. (8.2)
DIIN(E) - 0.

The results in Sections 5, 6, and 7 can be extended to the multiknot case
by invoking the appropriate spline interpolation theorems in their multiknot
formulations. For example, Theorem 6.2 becomes

THeOREM 8.1.  Let the boundary forms (6.1) satis/v Postulate 1. Then there
is a unique monospline N satisfving (8.2) iff (6.3) holds and. if n ~ 'Y, ;.
(6.4) also holds.

Likewise, the analog of Theorem 6.3 is

THEOREM 8.2,  Consider the class € of quadrature formulas (8.1) exact on
L-polynomials and with boundary forms (6.1) satisfying Postulate 1, (6.8), and

(6.9). Then € is nonempty iff (8.2) has a solution N. Moreover, N is uniquely
determined by (8.2) iff

Z M e (p g
il
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An important application of Theorem 8.2 is to guadrature formulas of the
form

Qi) 2 N oD T E
2 S|

namely. if

then the best quadrature formula of this type is induced by the monospline
M LN. where N is the unique solution to (8.2).

Note added in proof. The author has learned that A. Melkman also obtained Theorem
5.2 by an essentially different means based on Theorem 2.2 in [1]. This approach does not
vield the explicit relation between subdeterminants of D, and D., given here.
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